1st layer done

This is a great feeling- The lifting poles worked, the pulleys and chain hoists worked, we figured out the kinks and got all four logs on the piers. It looks less like a grave yard with tombstones sticking up, and more like a….well, at least a perimeter with big posts sticking out of it:

20170621_191651_zps7mylvvyk

There was a little preparation required before setting the logs down on the piers:

20170615_183820_zpsgquk3nsv

That’s pressure treated #2 pine – 2×12 from the local hardware store, laying on top of a shingle (90lb builder’s felt) that I sourced from the county dump (they were new in the plastic, so I scooped up a bunch).

We set the first log, then I had this nagging feeling that I was supposed to call the inspector before stacking logs. I was pretty sure he would find something wrong with the concrete. I checked the inspection schedule and it said a post-pour inspection was due, so I worked up the motivation and finally called him. He said- “No, go ahead and keep doing what you’re doing- call me when you get to the rough in.” Ok! We’re on a roll now. The rough in is when you have your electrical outlets and wires run, along with the plumbing, but you haven’t put any drywall in (yes, we will have framed walls inside the cabin, just like a normal home).

Piqued their interest

With four 30-foot lifting poles sticking up in the air, our property has become something of an attraction. Everyone from the water utility guys, to the motorcycle guy down the road slows down and takes a gander every time they drive by. The utility guys actually drove onto the property and looked over the mechanics of everything- according to one neighbor they were there for over an hour checking out the ropes, pulleys, rebar, and logs. The neighbors say this build is the “talk of the town”. Everyone is so nice and excited. Now when I’m out there working, I’ve seen several cars every day slow down to look. I’ve seen some stop, then back up, stare, then wave, and drive on slowly. A few have even pulled up, just to say hi (and get a closer look). The older guys who stop by tell me if they were 10-20 years younger, they’d be doing this too. It’s nice- the positive support is great motivation.  I usually wave and continue on with my business. The permit office lady saw me at the store last night. She said the utility guys had their doubts, but she set them straight- “Don’t worry- he’s an engineer- he’s got it all figured out.” Wellllllllllll……yeah. I’d like to think I’m more of a mathematician, you know, because that’s what my degree is in, but ok…….

A few notes about the method

If we were laying 2×4’s, it would be pretty easy- draw a center line on the 2×4, measure the distance between each piece of rebar, drill holes, place 2×4 on the pier, done. Logs are a little more hairy….

Curvy logs

They are not straight- and they may curve in more than one direction. Also there are a lot of knots on this wood. Finally, the logs have a lot of taper, which is a comparison of bottom diameter to the top diameter. The taper is a measure how much the diameter decreases from the bottom to the top.  LHBA recommends logs have a taper of less than 1 inch for every 10 feet. Our logs are about 20″ on the bottom, and 12″ at the top, and 40+ feet long. Our taper works out to be 20-12 = 8″ over 40 feet, or 2″ every 10′- double what LHBA recommends. But LHBA also recommends building with what you have. It can be done, but adds a level of complication when you try to level the structure. Probably more on that will come as we stack logs- each layer, you alternate butts and tops: where the butts are on one layer, is where the tops will be on next layer. If you “mind your levels”, i.e., measure the height at each corner as you stack, you can pick logs that match each other. The goal is less than 1/2″ height difference between all corners at the top of the walls.

Block and tackle

1489785074404_zpsq4tepvus

I’m using antique triple blocks that weigh about 20 lbs each. I need two for each pole- one on top and one on the bottom. They are rated at I-don’t-know-but-I’m-sure-it’s-a-lot pounds. They are not made anymore because no one does it like this. The physics behind them is pretty cool. My rope is rated at about 800 lbs, but the logs weigh between 3,000 – 6,000 lbs. Using the triple blocks, I’m gaining a 7:1 advantage- 850 lbs per log, but since I’m using 2 sets of blocks- one on each pole, it’s really 850/2 = 425 lbs per log…..Well, I thought it was cool.

Other equipment

I’m also using 6,400 lb straps from Harbor Freight, a Cant Hook (or “can” hook, 🙂 ), my wife’s Landcruiser (helps center the logs over the rebar), a chain saw, sledge hammer, some trucker chains (5,400 lb) and my trusty tractor.

The process for the first course

The first course is different from all the other layers- you are putting the log down on the rebar (cemented into the piers), instead of pounding the rebar into the log (like on the rest of the courses).

I stair-stepped the rebar before putting the logs on: I cut the longest rebar to 30″, then made the one next to it 28″, then 26″, etc. This helps when lowering the log so you only have to mind getting one piece of rebar in the log at at time.

I also tried the recommended template approach- lay a strip of 1×4 on the piers and mark where the rebar is, turn the log upside down and mark the holes on the log- but they were so bumpy and long that it didn’t work. I asked around- and found a method using string- attach a string to the piers, and measure the offset of the rebar from the string, (remembering that if the rebar is 1″ to the right of the string, the hole will be drilled 1″ to the left of the center mark on the log (because the log is upside down)).  Transfer this info to the log, then drill straight down. Flip the log over (flip is a generous word), then attach to lifting straps, pull until it’s over the rebar. Then slowly lower the log until the rebar can be fed into the hole in the log (done by my wife).

This slideshow requires JavaScript.

This is very exciting. All the work for the past year+ designing our plans, getting utilities installed, cutting down trees, borating them, removing branches, burning brush piles, digging holes, building forms, fixing the tractor, and on and on- got us to this point. I guess you could say we are done with phase I. Phase II will be getting the rough in complete- the goal is to get the roof on this year (by New Years Eve). Phase III will be finishing the inside. So I’ll just say thanks for coming on this journey with us. Feel free to leave comments.

Next up is the rest of the courses- these are placed on top of the log below, pilot holes drilled, then rebar is pounded through log and halfway into the log below- every two feet, and offset by one foot on alternating rows.

Advertisements

Even More Committed

DSCF0590.JPG

We could have backed out after cutting all the logs- could’ve called a logger and said, “come get ’em”. Or the water and power. But it’s getting harder each time we add something. Today, we poured concrete. Looks like we’re committed now. But I should back up a little…

Where we left off

In my last post, I thought it would go smoothly (why did I think that?) when I called the building inspector (BI)- after all, the city had already approved my plans, which were designed by a licensed engineer; I was following city code (minimum 12″ below frost line for foundation), I had water and power as required. I called the city to schedule the BI, and he came out on a Thursday.

He wasn’t the most talkative guy. He walked around looking at my holes. I had a printed copy of the foundation plan on four 8 1/2″ by 11″ paper that I had taped together so it had plenty of detail. I don’t think he liked them all taped together. He said, “you drew these plans yourself?”

“No, they were drawn by a professional engineer in Washington state.”

“Hmmm…” More walking around.

“Well, this is very unconventional- no one uses this style of foundation anymore- I’ve only seen it in hundred year old houses.” (Wait- if you’ve seen it in hundred-year-old houses, doesn’t that mean it’s pretty good?)

Then the disheartening news: “I’m going to have to see some stamped plans before you can continue work on this project.” (‘Stamped plans’ means that a local licensed engineer goes through your plans with a fine-toothed comb and calculates all the stresses involved in your structure. Things like wind speed, tension forces, sheer forces, compressive forces, and earthquake zones are measured, based on the type of wood you use– oak is different than Southern Yellow Pine.  All of the factors and calculations can be combined into a detailed report that can be 50 pages long. You can imagine what it might cost for a local engineer to produce such a report.)

“But the city already approved them,” I protested.

“I have to be sure they will work in this soil condition. Have you run into any clay? Your soil looks pretty good; usually this area has a lot of clay.”

“No clay that I’ve noticed. I should be able to get them stamped pretty easily,” I bluffed.  I actually had no idea what getting them stamped would involve. I really hadn’t seen any clay. But now the whole project was in jeopardy of a huge delay.

I told my wife the bad news- she was very sad about it too. I posted about it on Facebook- because I had asked the guys at church for help with pouring concrete on Saturday. I mentioned that the BI was now requiring me to get the plans stamped by an engineer, so the pour was canceled. One guy from church commented that he might know someone who could review my plans and stamp them.

We pay tithing

That night, my wife mentioned, “but we pay our tithing!” In our church, we believe in the Old Testament promise that if you pay tithing on your income (a ‘tithe’ means ‘tenth’, so we pay 10%), the Lord will “open you the windows of heaven and pour you out a blessing that there shall not be room enough to receive it.”  I prayed on it that night.

The next day, Friday, I went to work. The suite next to mine is a group of civil engineers. I’ve been friendly with the head engineer. He’s been interested and supportive of my build from the beginning. I headed over and asked him for help. He said they don’t do small projects like mine- they do huge civil engineering projects for commercial construction- like resorts and malls. He did offer to print the plans on professional sized paper (2′ x 3′), so that was a positive move. But I still needed an engineer to stamp the plans. I checked on Facebook- the guy from church that commented had sent me a private message saying he was the guy that was an engineer, and he would review the plans for free if I wanted. Wow! I’ve heard of others in our group having to jump through hoops with their plans- and having it cost into the hundreds or even thousands to get them approved, not to mention if the local engineer requires changes to the structure or plans.  He asked for contact information for the LHBA engineer, so I found that and sent him my plans. He asked if I wanted the entire plan approved, or just the foundation. I thought about what the BI might think, and decided to go with the entire plan. It would take longer, but having the whole thing approved would make the approval air-tight.

He asked me questions about the soil quality and construction method- I told him I hadn’t found any clay. He said he was thinking about requiring a pedestal foundation with a continuous footer, just to improve the strength of the build, but needed more information from the LHBA engineer on the building method.

I didn’t sleep well that night. I kept having this dream where I had to dig a three-foot wide trench all the way around the perimeter for a footer. This would mean either hiring the excavator again (probably another $200), probably at least a week or two of work to level the holes, missing the good weather window, and setting the project back about a month. I was very worried about the piers- they were made out of plywood that sat in the back yard all winter covered by a tarp. But the tarp blew off several times, and some of the plies had separated on several pieces, and couldn’t be used. Even the rest weren’t that great. I was worried the plywood piers would fail when the 2,600 pounds of concrete was poured into each of them. In my dream I was trying to calculate the extra cost for concrete and rebar. I woke up at 2 A.M. and actually had to calculate the extra concrete. It would be about $1600 more. I just don’t have it.

The windows of heaven

The engineer from church had a detailed conversation with the LHBA engineer. The LHBA guy sent a 50-page sample engineering report for a 40×40 home on piers- like what I’m building. He also gave some detailed insight into the pier method, emphasizing that although piers aren’t as strong as a stem wall foundation, the piers work for the butt and pass method because of how the logs are tied together with rebar (a stem wall foundation usually has a continuous footer around the perimeter of the house along with a continuous wall that stands about 18″ above ground all the way around). The log walls are many, many times stronger than a conventional wall (built with 2×4’s), due to the rebar pinning method- a piece of rebar is spiked through the logs every 2 feet on every row. Combined with the piers, the structure is very strong. The guy from church said he would consider all of the information.

I sat on pins and needles waiting for the final report. It took one more day, but he sent a letter that the plans were approved with 3 caveats-

  1. All the piers had to be 12″ or more below ground
  2. I had to follow the new IRC fastening requirements (tells you how to attach the floors and walls and roof together). No big deal, I would have had to do this anyway- the notes on my plans needed to be updated anyway.
  3. The large piers had to be 20″ below ground. I had already increased the size of the top of the 3 largest piers from 8″x24″ to 12″x36″ to accommodate the larger logs I was using. Doing this changed the geometry enough that they were now taller. And due to the slope of my property, they were already within a few inches of being 20″ deep anyway.

Basically, I was already doing all of the above, so the cost to meet the BI’s requirements was $0.  I sent the original plans to the civil engineer guy next door, and he came over a few hours later and handed them to me, saying, “good luck with your build. These are free.” I plan to continue paying tithing for a long, long, long time.

We move ahead

While waiting for the okay, there was a lot of rain in the forecast, so I covered everything with plastic. I knew the piers were weak, and I was praying they wouldn’t get any wetter. I was planning on burying the piers up to their necks with dirt to ensure they didn’t “float up” when the concrete was poured (a common problem with truncated pyramidal piers), and also to counteract the tremendous pressure from the concrete pushing out on the piers. Some folks have reported that even though they had two guys standing on the piers, they still floated up. Others report that their piers busted, and concrete poured out all over the ground. I didn’t want to take any chances, but I had to wait until my plans were approved.

The day I got them approved was a big rainstorm. But the BI agreed to meet me the next day to go over my plans. It was exactly a week after he shut down the project. He looked at the printed plans, and the letter from the local engineer. He was a lot friendlier, too- talked about how he’s remodeling a house, and it’s very expensive. He likes old Ford trucks, like me, and noticed my Ford 3000 tractor (that’s a plus). He wanted to look at the logs.

“You moved these with that little tractor? How much do they weigh?”

“I figure the heaviest ones weigh between 4,000-6,000 pounds.”

“Wow.”  He said he was excited to see things move forward, thanked me for the letter, and said I could pour concrete. Yay!

Things go smoothly when I listen to my wife

I was working like crazy to bury the piers. Each one took 8 wheelbarrows full of dirt to bury- and there were 31 of them. Thursday, I went crazy trying to bury them. My wife suggested that we do a little pour on Friday to get our feet wet, and then pour the rest on Saturday. I wasn’t sure about breaking up the schedule into two days, but I figured she was right. Friday, I got up early and headed out at 6 A.M. I had to meet my boss for a couple hours and pick up a wheelbarrow from a guy on Craigslist, and then headed right back out. My wife picked up the two older boys and brought them out to help that afternoon. She said we should pour the 7 piers on the inside first, then do the outer ones on Saturday. Each truck can hold 9 yards of concrete, and each normal sized pier holds .67 yards of concrete. So I ordered 7 yards on Friday after 3 P.M., and then 17 yards (two trucks: 8 in one truck, and 9 in the other, each an hour apart, since they charge by the minute for any pour over an hour).

The pour went so smooth. Everything was perfect. The concrete truck driver gave us a lot of tips- like give two taps to each side of the pier with a hammer- it makes the concrete nice and smooth.  Was it that obvious that I had never done concrete on this scale before? 🙂

This slideshow requires JavaScript.

After the pour, I still had the outer piers to bury. There were 24 of them, and I had until the next morning at 9:00 to bury all of them. Julie and the boys helped, but the boys weren’t used to this much hard work, and Julie had already had a long day. They helped for about another hour or so, and then left. I stayed until 7 PM, then it got too dark. I had put in 13 hours that day, minus the 1.5 hours with my boss.

Saturday, I still had half the piers to bury before the concrete showed up. I got out there at 6 A.M., and started going at it. I finished burying the last pier at 9:00, and then the concrete showed up. My wife was running a little late, but got there in enough time to help smooth the concrete and place the rebar. She is quite a hard worker. Just as we finished the last of the first truck, the second one showed up early. The outer piers were easy to pour. I had three that separated a little at the top, but not enough to endanger anything.

20170429_112502.jpg

Overall, I couldn’t have been more pleased with the result, and all the little miracles that made it happen. I was so dead from all that work, that I laid on the couch all Saturday afternoon. Next is some site clean up like removing the plywood from the piers, and then I’ll be setting the lifting poles.

20170428_162441.jpg

Rain, Rain, go away

 

I need about a week of dry weather. Here’s the story:

Contacted my excavator- he still says he can dig 31 holes for about $400. He came out to look at my site on March 3, and said he can dig the holes any time I want, but he did  point out that I should have the plywood forms ready to drop in the holes the day he digs them. Which, at the time, I didn’t have any built, but I did have the plywood for them.

That sets up a few things that needed to happen:

Pour schedule

Day 0: foundation is dug, forms are ready to put in ground, rebar is onsite, and cut to size.

Day 1: level holes, install forms.

Day 2: Orient forms perfectly so the rebar will be ready to accept logs. The whole focus is to ensure the line of rebar sticking out of the tops of the piers is within 1/16″  perfectly lined up along the center of each line of piers along each side of the house. This helps with attaching the dreaded first layer of logs to the foundation, which is a pain, from what I hear.

Day 3: get pre-pour inspection done. Not sure what to expect here, but this is one of the inspections required by the city. I assume they are checking code to ensure piers are a minimum of 12″ below grade.

Day 4: pour concrete and place rebar in the forms.

Day 11:? pull plywood off forms. I think I wait a week after the pour to remove the plywood.
I have to do this over a short time period (think: days), because I think my forms (due to winter water damage) probably can’t take any more moisture. I don’t want them sitting around in the rain in holes in the ground while my rebar is on order, or while I try to get them oriented correctly. I just want to get them in the ground, orient them, get them inspected, and pour the concrete- preferably over the span of 2-3 dry days.

I did a final calculation on the volume of concrete needed. It’s a little tricky to calculate the volume of a “truncated regular pyramid”:

pyramid-11-638

Fortunately, the internet is a fantastic place for letting someone else do the heavy lifting, and there’s a website that will calculate the volume if you provide the a,b, & h. Turns out I need 0.66 cubic yards for each of my smaller forms (28), and 1.28 cubic yards for the larger forms (3), for a total of about 23 yards of concrete (about $2300).

This slideshow requires JavaScript.

Building the forms

I left the property after talking to Juni (the excavator) to go home and build forms. I built them all afternoon, and most of the next day (Saturday). Then I spent all week (when it wasn’t raining) building more. I almost finished building all 31 after a week of work. I need to put together the last three (which are the big ones- 54″x54″ base, 45 1/4″ tall).

My plywood was covered by a tarp all winter, but it still soaked up some water, which worries me. Concrete weighs about 3,700 pounds per cubic yard, and each pier is about 0.66 cubic yards, so I can figure about 2,400 pounds per pier. So the forms have to withstand 65 pounds per square foot (at least at the top). I also have to worry about the corners of the forms blowing out, or the bottoms, or maybe the whole pier will lift when the concrete is poured. I plan on using the extra dirt from the excavation to hold the forms down during the pour, and I’m adding collars to each one- found a cheap place (Mike’s Merchandise) to buy bolts – they sell surplus bolts and nuts for $1.00 per pound (13 nuts and bolts were a pound). I bought all they had in one size and ended up at about $20 of bolts- enough to do about 70% of the collars. If I had bought the same bolts at HomeDepot, it would have cost me $1.00 per bolt/nut, meaning, I would have paid about $372.00. So, my deal of $20-$30 is pretty cheap. Pays to shop around.

After building the forms, I have this huge pile of scrap leftover that I plan on using as part of the collars to strengthen the forms.

Getting Utilities installed

This has to be done before I can pass inspection- must have running water on site before you can pour concrete.

I went in January to get the utilities installed, but the utility company said I had to have a building permit. I went to the city to get the building permit, and they said I had to have utilities installed. Arggh! Will someone just please take my money so I can build?

I went back today, after getting the building permit- and they said, “Oh, do you have a copy of your building permit?” Well…..yes….posted out there on the property, like the city requires…. No matter- have to wait for the city electrical engineer to go out now (something else they didn’t mention last time….) and decide whether there’s enough power in the area to drop a line onto my property. She said she’ll take a picture of the permit while she’s out there tomorrow.

And I got the quote, too: normally, they come out and install a temporary utility pole with the meter on it. When you’re done building, you move the meter onto your house, and they come get the temporary pole. Of course, my build can’t be that simple, no- there’s no poles near my property – they are all across the street. So I have to pay for a permanent pole, plus a temporary pole (not sure why they can’t be the same). I also have to pay for a transformer. Expected cost: $5,000 for water, $385 for the temporary pole, and  $1800 for the permanent drop. Things are adding up…..

Sourcing Rebar

HomeDepot (hate to pick on them because they actually do sell 2×4’s for a good price, and they do have a lot of stuff in stock when you need it) sells rebar for about $0.50 per foot.

Capture

On the LHBA forum, there’s a section for posting “Craigslist finds”. On there, I discovered $0.30  per foot is a good deal. And just the other day, an advertisement popped up in my search:

Capture

I did the math- 7,000 ft for $1,000 works out to $0.14 per foot- a screaming deal. Except the guy (or gal, I guess), didn’t leave a phone number. Of course, 7,000 feet of rebar weighs 7,000 x .668 = 4676 lbs, so I’d need a bigger trailer (I think mine is rated for 2,000 pounds). But I only need 2600 feet for the cabin, and maybe half that for the garage. In the end, I could probably sell the scrap, and make my money back. In the end, the guy didn’t post any contact info- I pressed the “let poster know they didn’t leave any contact info” button. Several times. And again yesterday. And today. Twice. Maybe three times.

So I looked again for other ads, and found this guy in Decatur that says he’ll beat any price. I called him, and he did- $0.29 per foot. And he’ll cut it for free.  The old “a bird in the hand is better than two in the bush” holds true. And he spent all week last week cutting out plywood for forms for a house he’s building for himself. He wants the rain to go away, too…..

Summary

All of this adds up, of course, to a lot of money, time, and exhaustion. The main thing I’m worried about is that my forms don’t get left in the rain for days while I wait for an inspection, or the concrete, or the excavation. Getting all the materials, inspections, installations, and people lined up is quite an adventure. But once the foundation is done, the next adventure begins: getting ready to stack logs.