Almost done with 1st floor logs

 

We’re nearing another crossroads- the logs are about 12 feet off the ground, which means they are about 9 feet up from the piers, and about 8 feet up from the finished floor height. All of which means we have to start thinking about the second floor. But first, I’ll summarize what’s happened since my last post.

36680426186_acbd282bde_k

Improving techniques

Jack hammer is pretty good

The jack hammer cost me about $130. I don’t know if it’s a monster jack hammer or just a regular one, having never owned a jack hammer before now. But it is definitely heavy- I think it weighs close to 50 pounds. I also ordered a “rod driver bit” to go with it. The rod driver bit is usually for driving electrical grounding rods into the ground. If your home was built in the last 20 years or so, you probably have one of these- it’s to prevent an electrical surge from frying the wiring in your house. The contractor will hammer a 6 foot piece of (usually) copper into the ground, and the easiest way to do it is with a jack hammer.

36173202440_19f0f25657_k

Driving rebar into logs is pretty much the same idea. The bit is just a shaft with a cylindrical hole in the end that fits over the rebar. I drive the rebar as far as I can into the log which leaves about 3 inches for me to finish pounding in by hand, which is very do-able, and it sure beats pounding the whole 20 inch piece of rebar with a sledge hammer. Instead of taking about 8 minutes per rebar, it now takes about 10-20 seconds with the jack hammer, and then about 1 minute with the sledge hammer. So I can finish pinning an entire log in about 30 minutes, instead of about 2 hours. And not as tired, either.

35892204874_f8dcd262d7_k1

Chainsaw needs some adjusting

Last night, my neighbor was asking how it’s going- I told him slow.  When making any straight down cut with my chainsaw lately, the saw wants to veer off towards the left and do this weird curvy cut. The neighbor asked if the blade was straight- yeah, I just bought it about two weeks ago. Then he asked when the last time I sharpened it, was I sitting behind the saw or in front of it? Ummmmm- I was sitting behind it. He said try sharpening it with the blade facing me- sitting behind it makes one set of teeth uneven. Huh. I had no idea, so I tried it on Saturday: I cleaned the whole thing, sharpened it, and went that afternoon to make some cuts- nope. Still curvy. My other saw- the McCollough- gave up the ghost. The repair shop said the piston and rings are no good, and the saw is so old, they don’t make parts for them. I’m going to try another blade and chain on my Husky, since it looks like I’ll be using this saw for quite a while yet.

What are temporary lifting poles?

This is a necessity. What happens is this: all of our logs are crooked, and we are using the crookedest ones first because of all the doors and windows on the first floor- the doors and windows make it easy to cut the crookedest part of the log right at the door or window, and then roll the log this way and that way to make it sit better and get it straightened out for pinning.

The problem is that when you cut a log in the middle, you have to support it somehow. With the lifting poles in the corner, you need something temporary to hold the log at the cut so it doesn’t roll off the wall. So I use the last 10 – 15 feet of a log as a temporary lifting pole, and stand it up on the pier. I chain-bind it to the existing wall logs, and put a pulley or chain hoist on top and suspend the log I’m about to cut with it. I make the cut, do any adjusting to straighten out the bows or knots, and then pin the log. Then I take down the lifting pole and use it for the next location.

35917504683_eacec3339d_k
see the short temporary lifting pole on that almost center pier?

Plans change…

We wanted a back door, we didn’t want one….Now we want one. While stacking logs, it became apparent that if we added a door on the back of the house, we could use more logs that were crooked. We also redesigned the kitchen- now, instead of separating the laundry room from the kitchen with a wall, we took out the wall between the kitchen and laundry on the plans, and opened up the laundry area and kitchen to each other. Now, when you enter the house from the side-back door, the laundry is on the right, and the kitchen is on the left- opening up a lot more space. I still need to update the CAD drawings, but I’ll get to it eventually. So far, the inspector hasn’t come out and asked to see the plans, and the copy I emailed him- well, he said it was too small to read. If I update them before he asks for them….I guess he’ll never know the difference?

Next item, please

At this point in their builds, many LHBA members begin to put in the RPSL logs that hold up the roof. These logs are bolted to the wall logs at the front and back center of the house, and will be 30 feet tall in our case. The reasoning on why to put them in at this point is that if the walls are higher than the fifth or sixth course, it’s too hard to get them over the wall. In our case, with a pier foundation, we can just slide them under the house, then lift them up on the inside. Our “advantage” is that our house is forty feet long, which makes it easy to work with a thirty foot log inside it. Our other “advantage” is that we are using lifting poles and block and tackle instead of a telehandler.

NC-3187-540-170

I put “advantage” in quotes because most folks using a telehandler would snicker about how these two items- a forty foot home and lifting poles – are an advantage.

But they would probably admit that I’m right in this case. Of course, they would say all the advantages of otherwise having a telehandler outweigh these two drawbacks, whereupon I am reminded that a cheap telehandler is about $8,000 (I’m guessing the one in the photo would be about $70K+), whereas my lifting poles were free, and my lifting equipment was about $400. Sure, they’re slow, but I’ve already had a guy who is using a crane on his build state that I’m stacking faster than he is. Weird.

I guess we’ll wait to do the RPSL’s. The book shows a diagram of how to lift the girder log and RPSL’s and the ridge pole into place using nothing but block and tackle. Sort of a step-by-step. It looks like if we finish the walls first, we can use the walls to attach rigging anywhere we want and get the RPSL’s “just so”. If I try to get them in now, the only thing I have that’s taller that the RPSL’s now is my corner lifting poles, and I don’t want to put that much lateral force on the poles- they could snap off if I lift something very heavy too far away from their centers.

36680425856_13c78431d0_h
While we weren’t watching, she was having fun with the camera…..

That’s where we’re at for now. Feel free to comment below.

Advertisements

Up to the 4th Course

36128698816_1b0614ab0c_z

The method

Each complete layer of logs (made up of all the logs that are on the same level) is called a “course”. The logs are oriented in alternating pin-wheel courses- and by pinwheel, I mean at each corner, one end of each log “passes” a log that is “butted” up against  it. On the next course, you reverse the butts and passes at that same corner, and on and on.

Each log is pinned with rebar to the layer below- every 2 feet. I won’t bore you with too many of the details, but it is a lot of work: for 1/2″ rebar, you drill a 1/2″ hole through the top log. You beat the rebar into the hole, and then halfway through the log beneath it – and you don’t drill into the log beneath for strength purposes. You can do the math- a 40 foot log requires 20 pieces of rebar, so each course requires at least 80 pieces of rebar. I’m on course four, so that’s 320 pieces so far. By hand, with a sledge hammer. I go through at least a gallon of water every evening. The LHBA recommends everyone do the first two courses by hand, and then buy a jack hammer for the courses after that. So, I did my due diligence, and have now graduated:

Capture

It’ll be here this week, along with a rod driver bit.

The logs…..are fickle: I made a spreadsheet to catalog the logs by size, length, cut date, peel date, etc, but I haven’t used it yet for stacking logs. My wife has taken over that role, and is doing an awesome job. Usually, our evening goes something like this:

Me: pounding rebar in from last night. Her: wandering around the racks of logs, measuring tape in hand, finding the log that will fit over the top of whatever crooked log we put up the day before. She keeps in mind the height of each course, the type of logs we already have up on whatever course we’re on (monster or regular, knotty or clean, etc.). She’s also looking for which log will match the log next to it- ideally, for each course, you find four logs that have the same bottom and top diameter. She’s also thinking about where the windows are, the stairs, the bathrooms, the doors, the kitchen cabinets, etc., etc., and which log will look best in each location. Each log has it’s own quirks- they bow in different directions, have odd knots, may not match the one below, or may match the one below perfectly. I do a bit of surgery on each log- cutting off a knot here or there to make it fit better with the one below. It is a lot of thinking and measuring.

When I’m done pinning, I go find the log she marked with an oil pastel (doesn’t wash off as easily as chalk) and drag it over to the house. We proceed to lift the log using the tractor and the block and tackle into position. I like to get it up there, then fine tune it. She likes to make sure it will fit before lifting it. So we argue a little over the method- sometimes she’s right, sometimes I’m right. Eventually the log gets where it’s going. I cut off the obvious knots and lower it down. We end up having to position it with the tractor for the vertical placement, and the car for the horizontal placement.

With these huge twisty monster logs on the lower layers, this process has been taking more than a night, but when it’s exactly right, I place enough rebar in it to hold it until it’s too dark to work, then we go home. Our evenings begin around 4:00 pm, and we usually pack up and go home around 9:00 PM.

I’d like to speed things up, but with the crooked logs we are working with, there is a lot of turning the log this way and that until it fits as well as can be expected. But these are “monster logs” for the lower layers- some are more than six feet around at the base, or 24″+ in diameter. They take quite a bit of effort to place.

Progress is…..as expected

Of course, I always think things are going to go faster than they do. But we really are making good progress, considering the weather for this month. We’ve had so much rain, they declared the drought was over. In fact, there’s been so much rain that trees are falling over around the county.

 

Rain causes quite a few issues- the tractor gets stuck, the logs are slippery, they get a little heavier when they’re wet, power equipment has to be kept dry, etc, etc. But I did find out something interesting: did you know that there’s no echo when beating rebar into a log during a downpour? My theory is that the raindrops absorb the sound. Go ahead- ask me how I know that…..

This slideshow requires JavaScript.

….And then there’s the heat

Yeah- when it’s not raining, the humidity started climbing along with the temperature. The last three days of last week, the heat index was 105. We delayed working on the cabin until early evening on those days. I usually end up soaked from sweat from head to toe. I bring a change of clothes for the drive home, and I go through about a gallon of water every evening. I shouldn’t work in the heat, but we want this so bad that I just push through it all. My amazing wife does laundry for me and repairs my jeans (I now own one pair without any repairs- she’s not happy about that, and banned me from wearing that one pair to the property).

Lessons learned

One thing we’ve learned is how much you can use the crookedest logs- if you know where your doors and windows are going to be. We’ve placed the orneriest logs- logs that curved in all different directions- and they look really good. Had to place temporary lifting poles in the middle to hold them while I cut out the crooks, but when it’s all done, they really look good.

Yes, you can remove a log after placing it. It’s not easy, but after pinning it once, then not liking it, I bought a sawzall from Harbor Freight, and cut all the rebar out of it while suspending it with the pulleys. I turned it and pinned it again, but ended up not liking that position either. So I cut it again, then carefully pulled it out. It just wasn’t working. I don’t recommend it- we lost a day’s worth of progress, but, in the words of my late friend Ken Hieronymi, “I guess I’ll just eventually go crazy from every time I come out here and see that [log] hanging there all cock-eyed.” Didn’t want that to happen, so I pulled the beast out of there.

The neat thing is, the logs look better up than they do down. Seems obvious, but until they are stacked, you can’t get an idea of how the whole thing is going to look. One thing we’re both really happy with is that we made the butts of the logs face the front and back of the house. That’s how I wanted it, but my wife thought it might look better with the tips of the logs facing the front- so that the huge logs wouldn’t distract from the look of the place. We put the discussion on the LHBA forum- and a lot of people said they wished they had gone with my idea. Then one guy said to think about how the roof overhang is going to be supported- with the tips of the logs or the butts? So, for strength, we went with the butts facing the front and back- and it looks so good! Because it’s a 40×40, we needed to offset the mass of the house with some massive looking logs- and boy do those butts look good! I just realized this is starting to sound like some other kind of discussion, but I assure you, I’m not going there!

See:

You made it this far? Here’s a treat:

This is a video of us lifting log #16 into place: Lifting Log #16 into place.

 

How to make your own triple blocks for less than $45

This slideshow requires JavaScript.

Why a triple block? Why not a double? or a single?

Because two triple blocks working together gives you a 7:1 mechanical advantage- 5,000 lb log requires only ~720 lbs of force to lift. And you can use just 5/8″ thick rope to lift 720 lbs. A double block would only reduce the force down to 1,250 lb. But you have to double that- for each end of the log. And a single……ummmmm…..there’s no mechanical advantage to a single. Stop talking about single pulleys. On the other end, a “quadruple” block doesn’t really exist beyond huge construction cranes with wire rope- from what I’ve seen and read, anything more than three pulleys and the friction increases beyond the efficiency gained. So, a triple block it is.

First, I looked online. And found…..not quite nothing, but almost. It’s unbelievable in this age of Amazon and Ebay that you can’t find a triple block with more than 3,000 pound capacity. I suppose not many people are lifting heavy objects by hand. Ok, you can find them, but they are insanely expensive, and you need two to make a set. Not to mention you need four sets to work efficiently. Look at that price:2017-07-03-22-48-53_scrot

I mean, I guess you could climb a 30-foot lifting pole and change the block and tackle out every time you want to lift a log, but you would still need four pulleys- two on each pole- to lift each log. So, it would cost you $1,300, plus rope (about $300).

This calls for a cheaper solution:

Enter Harbor Freight:

2017-07-03-23-07-00_scrot

Of course, I’d need six of them to make a set, but that’s only $72, not $327. And some grade 8 bolts, which are easy to obtain from Fastenall.

Here’s what I came up with:20170705_204824_zpsm7auqpcv

 

 

Some more notes: I needed somewhere to tie the end of the rope- on the antique pulleys, there’s a place called a becket 70d1a3c340f41214567fd48f2725ccd9--block-and-tackle-pulley-light. I didn’t have one, so I took two extra plates from a single pulley, and put a bolt through them.

The results

I just finished lifting the biggest log yet- over 6 feet around at the base, and 50+ feet long- I figure it weighs around 6,000 lbs. The pulley held just fine- in fact, it held better than the #6 triples that I had on the opposite end. The singles (on the box) were originally rated for 3,000 lbs, so I figure the modified triple is worth at least that much, but with that huge log, probably more like 4,000 lbs.

I spent $12 per pulley x 3 pulleys = $36. The two grade 8 bolts were about $4 each. So for ~$45, I got what normally costs over $300.

 

1st layer done

This is a great feeling- The lifting poles worked, the pulleys and chain hoists worked, we figured out the kinks and got all four logs on the piers. It looks less like a grave yard with tombstones sticking up, and more like a….well, at least a perimeter with big posts sticking out of it:

20170621_191651_zps7mylvvyk

There was a little preparation required before setting the logs down on the piers:

20170615_183820_zpsgquk3nsv

That’s pressure treated #2 pine – 2×12 from the local hardware store, laying on top of a shingle (90lb builder’s felt) that I sourced from the county dump (they were new in the plastic, so I scooped up a bunch).

We set the first log, then I had this nagging feeling that I was supposed to call the inspector before stacking logs. I was pretty sure he would find something wrong with the concrete. I checked the inspection schedule and it said a post-pour inspection was due, so I worked up the motivation and finally called him. He said- “No, go ahead and keep doing what you’re doing- call me when you get to the rough in.” Ok! We’re on a roll now. The rough in is when you have your electrical outlets and wires run, along with the plumbing, but you haven’t put any drywall in (yes, we will have framed walls inside the cabin, just like a normal home).

Piqued their interest

With four 30-foot lifting poles sticking up in the air, our property has become something of an attraction. Everyone from the water utility guys, to the motorcycle guy down the road slows down and takes a gander every time they drive by. The utility guys actually drove onto the property and looked over the mechanics of everything- according to one neighbor they were there for over an hour checking out the ropes, pulleys, rebar, and logs. The neighbors say this build is the “talk of the town”. Everyone is so nice and excited. Now when I’m out there working, I’ve seen several cars every day slow down to look. I’ve seen some stop, then back up, stare, then wave, and drive on slowly. A few have even pulled up, just to say hi (and get a closer look). The older guys who stop by tell me if they were 10-20 years younger, they’d be doing this too. It’s nice- the positive support is great motivation.  I usually wave and continue on with my business. The permit office lady saw me at the store last night. She said the utility guys had their doubts, but she set them straight- “Don’t worry- he’s an engineer- he’s got it all figured out.” Wellllllllllll……yeah. I’d like to think I’m more of a mathematician, you know, because that’s what my degree is in, but ok…….

A few notes about the method

If we were laying 2×4’s, it would be pretty easy- draw a center line on the 2×4, measure the distance between each piece of rebar, drill holes, place 2×4 on the pier, done. Logs are a little more hairy….

Curvy logs

They are not straight- and they may curve in more than one direction. Also there are a lot of knots on this wood. Finally, the logs have a lot of taper, which is a comparison of bottom diameter to the top diameter. The taper is a measure how much the diameter decreases from the bottom to the top.  LHBA recommends logs have a taper of less than 1 inch for every 10 feet. Our logs are about 20″ on the bottom, and 12″ at the top, and 40+ feet long. Our taper works out to be 20-12 = 8″ over 40 feet, or 2″ every 10′- double what LHBA recommends. But LHBA also recommends building with what you have. It can be done, but adds a level of complication when you try to level the structure. Probably more on that will come as we stack logs- each layer, you alternate butts and tops: where the butts are on one layer, is where the tops will be on next layer. If you “mind your levels”, i.e., measure the height at each corner as you stack, you can pick logs that match each other. The goal is less than 1/2″ height difference between all corners at the top of the walls.

Block and tackle

1489785074404_zpsq4tepvus

I’m using antique triple blocks that weigh about 20 lbs each. I need two for each pole- one on top and one on the bottom. They are rated at I-don’t-know-but-I’m-sure-it’s-a-lot pounds. They are not made anymore because no one does it like this. The physics behind them is pretty cool. My rope is rated at about 800 lbs, but the logs weigh between 3,000 – 6,000 lbs. Using the triple blocks, I’m gaining a 7:1 advantage- 850 lbs per log, but since I’m using 2 sets of blocks- one on each pole, it’s really 850/2 = 425 lbs per log…..Well, I thought it was cool.

Other equipment

I’m also using 6,400 lb straps from Harbor Freight, a Cant Hook (or “can” hook, 🙂 ), my wife’s Landcruiser (helps center the logs over the rebar), a chain saw, sledge hammer, some trucker chains (5,400 lb) and my trusty tractor.

The process for the first course

The first course is different from all the other layers- you are putting the log down on the rebar (cemented into the piers), instead of pounding the rebar into the log (like on the rest of the courses).

I stair-stepped the rebar before putting the logs on: I cut the longest rebar to 30″, then made the one next to it 28″, then 26″, etc. This helps when lowering the log so you only have to mind getting one piece of rebar in the log at at time.

I also tried the recommended template approach- lay a strip of 1×4 on the piers and mark where the rebar is, turn the log upside down and mark the holes on the log- but they were so bumpy and long that it didn’t work. I asked around- and found a method using string- attach a string to the piers, and measure the offset of the rebar from the string, (remembering that if the rebar is 1″ to the right of the string, the hole will be drilled 1″ to the left of the center mark on the log (because the log is upside down)).  Transfer this info to the log, then drill straight down. Flip the log over (flip is a generous word), then attach to lifting straps, pull until it’s over the rebar. Then slowly lower the log until the rebar can be fed into the hole in the log (done by my wife).

This slideshow requires JavaScript.

This is very exciting. All the work for the past year+ designing our plans, getting utilities installed, cutting down trees, borating them, removing branches, burning brush piles, digging holes, building forms, fixing the tractor, and on and on- got us to this point. I guess you could say we are done with phase I. Phase II will be getting the rough in complete- the goal is to get the roof on this year (by New Years Eve). Phase III will be finishing the inside. So I’ll just say thanks for coming on this journey with us. Feel free to leave comments.

Next up is the rest of the courses- these are placed on top of the log below, pilot holes drilled, then rebar is pounded through log and halfway into the log below- every two feet, and offset by one foot on alternating rows.

“Houston, we have lift-off”

20170610_124242_zps1ipq8ket

The poles are in! I need to thank everyone who helped out. I often feel like I’m a recluse, and I have a hard time in social settings. I’m pretty much an introvert – parties wear me out, while enjoying gardening or working on my own is energizing. I asked around at church last week, and made a couple of pleas asking for help on facebook. I got a commitment of two people by Thursday night, but we needed more- a lot more. I got a couple more Friday night, and a couple of calls Saturday morning. It was humbling to think that these people thought enough of me to come help out. I’m indebted to them, because this is something that I could not do myself.

20170610_104454_zpsgyscfxyi
L-R: David Bailey, Nathan Forbes, Brian Hill, Jeff Hoki, Maxon Bromley, Jude Collins, Jared Mayfield. (Not pictured: Paul Glotzbach & Julie Hill)

My plan was to do as much work as possible before Saturday so that the tractor could do most of the work, while a few guys held onto the ropes to keep things from going sideways (literally).

The results were mixed- the guys still had to do a lot of work, but when the poles started going up, it went well – and quick. We got all four poles installed in 1.5 hours. Which was great because two of the guys had to leave for other family engagements at 11:00.

A few more details, then I promise to show some pictures:

When I tried it myself, I noticed the log just went right over the hole. I needed a way to get the log to dig into the dirt enough that the tractor could get it upright. I dug some trenches about ten feet long leading down to the hole. Each hole is four feet deep, so I made the trenches go down about three feet, with a one foot drop into the hole. I figured this little shelf would help prevent the pole from continuing past vertical once it was in the hole. I was right!

Along with the trenches, I piled up dirt to get the upper end of the pole off the ground, which also helped the bottom end angle down into the hole.

On the first lift, the tractor couldn’t overcome gravity due to the angle of the cable.  I needed the pole to be higher before the tractor could do its job. Having eight guys to lift the pole high enough and walk it upright was the answer. Once the top end of the pole was about 10 – 15 feet in the air, the tractor did the rest, and the guys on ropes were able to stabilize the pole while I maneuvered the tractor to get the pole straight. Then, the pole slipped into the hole.

Once the pole is in the hole, there’s a little fine tuning to get the pole completely vertical, then I climbed the ladder to remove the lifting cable, while the guys shovel dirt back in around the poles. Maxon was like, “every time you climb that ladder I get nervous”. Wait- you’re not nervous when lifting? 🙂

The whole process took about 20 minutes per pole. My wife helped babysit the children, took great pictures, and then peeled some logs.

First, the trenches and holes:

This slideshow requires JavaScript.

Then getting the lifting poles vertical:

This slideshow requires JavaScript.

Next up: getting the pressure-treated sill plate installed, then on to stacking logs! Woohoo! This is a major milestone!

Finishing Foundation, Getting ready to install Lifting poles

We didn’t have any blowouts on the foundation. I waited seven days for the concrete to dry, and then I started pulling the plywood off the piers. They looked ugly:

DSCF0661

The neighbor even came over to have a look. He said, “you gotta cover those up with mortar- if water gets in there and freezes, it’ll crack your foundation.

“But they’ll be under the house- and there’ll be a ten-foot wide porch to protect them,” I protested.

“Doesn’t matter- humidity in the air can do it, too. The building inspector might not like ’em looking like that,” he reminded me.

I knew he was right, even though I didn’t want him to be right. I bought several bags (like 20) of a structural mortar mix rated at 5500 p.s.i. and started slathering it on. It was no fun.

This slideshow requires JavaScript.

It took about 3/4 of a bag to do each pier, and it took about 45 minutes to cover each pier. I also had to dig up the plywood to get it out.

Why so bumpy?

As I dug and slathered, I tried to figure out what happened- why were my piers so bumpy? I think there were two problems: my plans call for “3,000 psi” concrete. But when I called the concrete company, they said they had 2500 psi and 3500 psi. That didn’t make any sense to me, so I asked the guy what the difference was. He said you usually use the 3500 psi for footings, while the 2500 psi was for walls. That still didn’t help- are piers considered footings or are they considered foundations? So I went with the 3500 psi. I think it had a bit more rocks in the mix. That was one problem. The other problem was that I buried the piers in dirt to keep them from floating during the pour. I put collars on them and buried them up to their necks with dirt. This wasn’t a problem except that you’re supposed to use a concrete vibrator to shake the concrete during the pour so you get nice smooth faces when it dries. But the driver said you don’t need that- just bang on the pier form with a hammer or the tip of the shovel, and that will shake it up good enough.  But obviously not- I think the dirt softened the blows, and that’s why the face of the concrete was so bumpy.

Getting Lifting poles ready

Well, I finished up on Saturday morning with the mortar. Next up is installing the lifting poles. First, we had to pick which four logs would be the lifting poles- I wanted small logs that were very straight, minimum of 12″ diameter, and they have to be 30 feet long.  The photos below show the preparation of a lifting pole.

This slideshow requires JavaScript.

I also had to dig 4 holes in the corner of the foundation- the holes have to be inside the perimeter of the foundation (because the lifting poles will be on the inside of the walls while lifting). The holes have to be at least 4 feet deep. These are temporary poles, and I’ll cut them down when the walls are complete. I have to install cleats to stop the block and tackle from sliding down the pole. The lifting strap in the photo holds the top pulley. The log hangs from the bottom pulley. Since I’m using triple blocks, the rope goes back and forth 7 times. So, a 30 foot pole needs at least 210 feet of rope. The plus side is that the force needed to lift a 4,000 log is 4,000 / 7  = about 600 lbs total, and since each log is lifted by 2 sets of pulleys, 600 / 2 = 300 lbs for each side, which my tractor can easily handle. To tie off the logs while lifting, I plan on using a prusik knot as a “progress capture knot” to stop the log from dropping when I release the pressure from the tractor.

Next, moving the lifting pole into position:

20170603_164929_zpshc6optdq

And then a fail on getting it vertical. I tried to lift it with the tractor, but the pole just wanted to flop around and not go up. So I tried to get it up on a little bit of an angle, but it was still no good.

This slideshow requires JavaScript.

So, we gave up trying to do it ourselves. We need help. I asked at church for some guys to come next Saturday- that gives me a week to prep all four poles with cleats, get them into position, have enough rope ready, and get all the pulleys “reeved” (that means getting the rope attached to the pulleys), and get two more 4′ deep holes ready in the corners. Got my work cut out for me.

blocks_mechanical_advantage_reevingdualtripples

Even More Committed

DSCF0590.JPG

We could have backed out after cutting all the logs- could’ve called a logger and said, “come get ’em”. Or the water and power. But it’s getting harder each time we add something. Today, we poured concrete. Looks like we’re committed now. But I should back up a little…

Where we left off

In my last post, I thought it would go smoothly (why did I think that?) when I called the building inspector (BI)- after all, the city had already approved my plans, which were designed by a licensed engineer; I was following city code (minimum 12″ below frost line for foundation), I had water and power as required. I called the city to schedule the BI, and he came out on a Thursday.

He wasn’t the most talkative guy. He walked around looking at my holes. I had a printed copy of the foundation plan on four 8 1/2″ by 11″ paper that I had taped together so it had plenty of detail. I don’t think he liked them all taped together. He said, “you drew these plans yourself?”

“No, they were drawn by a professional engineer in Washington state.”

“Hmmm…” More walking around.

“Well, this is very unconventional- no one uses this style of foundation anymore- I’ve only seen it in hundred year old houses.” (Wait- if you’ve seen it in hundred-year-old houses, doesn’t that mean it’s pretty good?)

Then the disheartening news: “I’m going to have to see some stamped plans before you can continue work on this project.” (‘Stamped plans’ means that a local licensed engineer goes through your plans with a fine-toothed comb and calculates all the stresses involved in your structure. Things like wind speed, tension forces, sheer forces, compressive forces, and earthquake zones are measured, based on the type of wood you use– oak is different than Southern Yellow Pine.  All of the factors and calculations can be combined into a detailed report that can be 50 pages long. You can imagine what it might cost for a local engineer to produce such a report.)

“But the city already approved them,” I protested.

“I have to be sure they will work in this soil condition. Have you run into any clay? Your soil looks pretty good; usually this area has a lot of clay.”

“No clay that I’ve noticed. I should be able to get them stamped pretty easily,” I bluffed.  I actually had no idea what getting them stamped would involve. I really hadn’t seen any clay. But now the whole project was in jeopardy of a huge delay.

I told my wife the bad news- she was very sad about it too. I posted about it on Facebook- because I had asked the guys at church for help with pouring concrete on Saturday. I mentioned that the BI was now requiring me to get the plans stamped by an engineer, so the pour was canceled. One guy from church commented that he might know someone who could review my plans and stamp them.

We pay tithing

That night, my wife mentioned, “but we pay our tithing!” In our church, we believe in the Old Testament promise that if you pay tithing on your income (a ‘tithe’ means ‘tenth’, so we pay 10%), the Lord will “open you the windows of heaven and pour you out a blessing that there shall not be room enough to receive it.”  I prayed on it that night.

The next day, Friday, I went to work. The suite next to mine is a group of civil engineers. I’ve been friendly with the head engineer. He’s been interested and supportive of my build from the beginning. I headed over and asked him for help. He said they don’t do small projects like mine- they do huge civil engineering projects for commercial construction- like resorts and malls. He did offer to print the plans on professional sized paper (2′ x 3′), so that was a positive move. But I still needed an engineer to stamp the plans. I checked on Facebook- the guy from church that commented had sent me a private message saying he was the guy that was an engineer, and he would review the plans for free if I wanted. Wow! I’ve heard of others in our group having to jump through hoops with their plans- and having it cost into the hundreds or even thousands to get them approved, not to mention if the local engineer requires changes to the structure or plans.  He asked for contact information for the LHBA engineer, so I found that and sent him my plans. He asked if I wanted the entire plan approved, or just the foundation. I thought about what the BI might think, and decided to go with the entire plan. It would take longer, but having the whole thing approved would make the approval air-tight.

He asked me questions about the soil quality and construction method- I told him I hadn’t found any clay. He said he was thinking about requiring a pedestal foundation with a continuous footer, just to improve the strength of the build, but needed more information from the LHBA engineer on the building method.

I didn’t sleep well that night. I kept having this dream where I had to dig a three-foot wide trench all the way around the perimeter for a footer. This would mean either hiring the excavator again (probably another $200), probably at least a week or two of work to level the holes, missing the good weather window, and setting the project back about a month. I was very worried about the piers- they were made out of plywood that sat in the back yard all winter covered by a tarp. But the tarp blew off several times, and some of the plies had separated on several pieces, and couldn’t be used. Even the rest weren’t that great. I was worried the plywood piers would fail when the 2,600 pounds of concrete was poured into each of them. In my dream I was trying to calculate the extra cost for concrete and rebar. I woke up at 2 A.M. and actually had to calculate the extra concrete. It would be about $1600 more. I just don’t have it.

The windows of heaven

The engineer from church had a detailed conversation with the LHBA engineer. The LHBA guy sent a 50-page sample engineering report for a 40×40 home on piers- like what I’m building. He also gave some detailed insight into the pier method, emphasizing that although piers aren’t as strong as a stem wall foundation, the piers work for the butt and pass method because of how the logs are tied together with rebar (a stem wall foundation usually has a continuous footer around the perimeter of the house along with a continuous wall that stands about 18″ above ground all the way around). The log walls are many, many times stronger than a conventional wall (built with 2×4’s), due to the rebar pinning method- a piece of rebar is spiked through the logs every 2 feet on every row. Combined with the piers, the structure is very strong. The guy from church said he would consider all of the information.

I sat on pins and needles waiting for the final report. It took one more day, but he sent a letter that the plans were approved with 3 caveats-

  1. All the piers had to be 12″ or more below ground
  2. I had to follow the new IRC fastening requirements (tells you how to attach the floors and walls and roof together). No big deal, I would have had to do this anyway- the notes on my plans needed to be updated anyway.
  3. The large piers had to be 20″ below ground. I had already increased the size of the top of the 3 largest piers from 8″x24″ to 12″x36″ to accommodate the larger logs I was using. Doing this changed the geometry enough that they were now taller. And due to the slope of my property, they were already within a few inches of being 20″ deep anyway.

Basically, I was already doing all of the above, so the cost to meet the BI’s requirements was $0.  I sent the original plans to the civil engineer guy next door, and he came over a few hours later and handed them to me, saying, “good luck with your build. These are free.” I plan to continue paying tithing for a long, long, long time.

We move ahead

While waiting for the okay, there was a lot of rain in the forecast, so I covered everything with plastic. I knew the piers were weak, and I was praying they wouldn’t get any wetter. I was planning on burying the piers up to their necks with dirt to ensure they didn’t “float up” when the concrete was poured (a common problem with truncated pyramidal piers), and also to counteract the tremendous pressure from the concrete pushing out on the piers. Some folks have reported that even though they had two guys standing on the piers, they still floated up. Others report that their piers busted, and concrete poured out all over the ground. I didn’t want to take any chances, but I had to wait until my plans were approved.

The day I got them approved was a big rainstorm. But the BI agreed to meet me the next day to go over my plans. It was exactly a week after he shut down the project. He looked at the printed plans, and the letter from the local engineer. He was a lot friendlier, too- talked about how he’s remodeling a house, and it’s very expensive. He likes old Ford trucks, like me, and noticed my Ford 3000 tractor (that’s a plus). He wanted to look at the logs.

“You moved these with that little tractor? How much do they weigh?”

“I figure the heaviest ones weigh between 4,000-6,000 pounds.”

“Wow.”  He said he was excited to see things move forward, thanked me for the letter, and said I could pour concrete. Yay!

Things go smoothly when I listen to my wife

I was working like crazy to bury the piers. Each one took 8 wheelbarrows full of dirt to bury- and there were 31 of them. Thursday, I went crazy trying to bury them. My wife suggested that we do a little pour on Friday to get our feet wet, and then pour the rest on Saturday. I wasn’t sure about breaking up the schedule into two days, but I figured she was right. Friday, I got up early and headed out at 6 A.M. I had to meet my boss for a couple hours and pick up a wheelbarrow from a guy on Craigslist, and then headed right back out. My wife picked up the two older boys and brought them out to help that afternoon. She said we should pour the 7 piers on the inside first, then do the outer ones on Saturday. Each truck can hold 9 yards of concrete, and each normal sized pier holds .67 yards of concrete. So I ordered 7 yards on Friday after 3 P.M., and then 17 yards (two trucks: 8 in one truck, and 9 in the other, each an hour apart, since they charge by the minute for any pour over an hour).

The pour went so smooth. Everything was perfect. The concrete truck driver gave us a lot of tips- like give two taps to each side of the pier with a hammer- it makes the concrete nice and smooth.  Was it that obvious that I had never done concrete on this scale before? 🙂

This slideshow requires JavaScript.

After the pour, I still had the outer piers to bury. There were 24 of them, and I had until the next morning at 9:00 to bury all of them. Julie and the boys helped, but the boys weren’t used to this much hard work, and Julie had already had a long day. They helped for about another hour or so, and then left. I stayed until 7 PM, then it got too dark. I had put in 13 hours that day, minus the 1.5 hours with my boss.

Saturday, I still had half the piers to bury before the concrete showed up. I got out there at 6 A.M., and started going at it. I finished burying the last pier at 9:00, and then the concrete showed up. My wife was running a little late, but got there in enough time to help smooth the concrete and place the rebar. She is quite a hard worker. Just as we finished the last of the first truck, the second one showed up early. The outer piers were easy to pour. I had three that separated a little at the top, but not enough to endanger anything.

20170429_112502.jpg

Overall, I couldn’t have been more pleased with the result, and all the little miracles that made it happen. I was so dead from all that work, that I laid on the couch all Saturday afternoon. Next is some site clean up like removing the plywood from the piers, and then I’ll be setting the lifting poles.

20170428_162441.jpg