Part I: Ridge Pole up, but what a struggle

We decided to go with a crane. I’ve written about how dangerous I thought installing the Ridge Pole myself would be, how long it would take, and how expensive it would be.

I took a Thursday & Friday off work to prepare. Thursday- it took me nearly all day to pull the rafters off the rack, bolt them together, and then lay them out in preparation for the crane to lift them.

This slideshow requires JavaScript.

By evening, I had just enough daylight to chain blocks to the RPSL’s as a cradle to hold the RP. But I almost fell when the scaffolding slipped a little, and had to have my wife jump on it to hold it down. Stupid me.

29881055247_9b6a71551c_b

Friday, the crane showed up a little early. I was up on the front RPSL chain binding a cradle to the top to ensure the Ridge Pole (RP) wouldn’t roll off after the crane released it. As I was binding it, I happened to look at the back RPSL and noticed the front pole that I was on was not in line with the back pole- it was off by about 8″. I guess I hadn’t noticed because when we set the poles, we were going for “mostly” perpendicular. Since this was the first time I had climbed to the top, I had never noticed the little hook about 4′ from the top that made it off-center from the rear.

Anyway, crane guy pulled up, and I asked him what he thought. He went and looked, and agreed it was off by about 8″. Leaving it would mean the whole roof wouldn’t be perpendicular to the house. Probably no one would really notice, but I made an executive decision to fix it right then. I told the crane guy to go ahead and get set up, while I loosened the bolts. I had him hook on to the top of the pole so it wouldn’t fall, then set it in the right spot. I eyeballed it, and had him and my wife check as well. When it was all good, I started drilling new holes and attaching the bolts. We used about an hour to do this part.

This slideshow requires JavaScript.

Meanwhile, my wife was using roofing tacks (with big orange plastic heads) to mark every 4′ along the RP, so we could set the rafters from the ground. She also recommended wisely that we leave the 2×4’s we nailed to each end in position- at 12 o’clock (straight up), so we could tell if the RP rolled a bit.

29891832537_f54ea06036_b
roofing tacks on the RP- you can see these from the ground.

Then we hooked up the RP to the crane. The crane guy thought it was best to choke the RP with the straps. I don’t know how else we could’ve done it, but I went with it. After a few attempts at lifting it and setting it down, we found the center of the RP, and up it went. I climbed up to help set it- got on top of the house and guided the RP into place. I measured about 7′ out from the RPSL, but noticed that there was a giant knot right where it would touch the RPSL, so I went with 8′. At this point, I should’ve marked it, and then had him set it down so I could saw a flat spot where it would sit on the RPSL. Part of this was my fault- I was worried about how much it was costing (about $120/hr), and the other part was the crane guy giving me disapproving looks every time I did something “dangerous” (hello- the whole project is dangerous). He got to me, for sure- I was feeling weak and nervous up that high, and I never get nervous at heights.

This slideshow requires JavaScript.

It went downhill from there- I got the front pinned, then went to the back, and got it pinned. I called him from my cell and asked how much pressure he had holding the RP- “about 700 lbs”, he said. I told him to release it slowly- and as he did, the RP started to roll off the RPSL’s! I had him stop so I could get down. We talked about what to do- he was real nervous about releasing it, and so was I, but we had to move on. So I had him release it all the way. It rolled to almost 2 o’clock (10 o’clock from the front).

This slideshow requires JavaScript.

Well, the crane guy flipped out- said it was all unsafe, said rebar wouldn’t hold that thing in place, said we needed an engineer because rebar isn’t that strong. Note: 3/4″ rebar is very strong. Even though I followed the plans – they said 5/8″ rebar was good enough, but I thought 3/4″ was better- either way, there’s a tip I missed that I’ll discuss later. I tried to talk him into setting a few rafters- thinking that would stabilize the RP. I wanted him to roll it back to 12 o’clock with the crane, but he didn’t want to touch it. He shot down all my ideas. In his defense, he promised us 4 hours, but was there for 5.5, and only charged us for 4, so that was nice. But his attitude was awful- he was no help.

He chastised me for climbing up to the RP on a ladder attached to scaffolding, saying, “you sure you want to climb up there?”

At that point, I had had enough, and I shot back, “you gotta better way to release your straps?”

“well, no.”

“I’m serious- if you have a better idea, let me know.” But he just turned around and walked away. I was getting upset- his only help was that he had a crane. He wasn’t helpful with ideas, or experience, or anything else.

He wouldn’t listen to any ideas we had. We were just dumbfounded and frustrated. We had to leave the rafters on the ground, and the RP cockeyed. We had no idea how to fix it. I was completely burned out- heat exhaustion or depression or both. We went home thinking of giving up- ‘if the crane guy can’t help fix the RP, who can?’ we thought. It was overwhelming to think we had come this far only to end up with a cockeyed RP.  On top of that, it rained that night, and there was a little wind with it. I had visions of coming back the next day to find the house smashed and the RP laying on the ground.

I got on the LHBA forum and told them what happened. Everyone pitched in with ideas. I came up with a plan based on the awesome folks on LHBA. After talking to them, it didn’t seem that bad- lots of work, but not the end of the world. Saturday, we went out in the afternoon to see what we could come up with on the RP.  I moved the scaffolding over to the back wall, and threw a 20,000 lb strap over the RP in a choke position. I hoisted up my 60 lb, 2 ton chain hoist to the top of the wall, and used another strap tied to the wall to hook the other end of the chain hoist. With the hoist in the middle, and the RP in a choke, I was able to slowly wind up the chain hoist and roll the RP back to 12 o’clock. Here’s a video of the process. It was very scary moving a 10,000 lb log like that- thinking that it might fall off the RPSL’s or break the rebar, or worse, so I only moved it just a little at a time. Once stable, I climbed back up and drilled another hole next to the first one on the RP- and drove in a 5/8″ x 24″ piece of rebar to the RPSL. The theory is that with two pieces of rebar- if the RP rolls, one rebar pin will compress, and the other will decompress- the two actions will cancel most of the movement from the RP. It was successful, but took a long time to do.

This slideshow requires JavaScript.

 

With that part done, we felt a little more confident. I spent the next few days out in the rain, making my last set of rafters. We discussed ways we could do it ourselves by hand, and without the crane, but with winter coming on, we decided time was money.  So, when we noticed the weather was going to clear, I called the crane guy back. He said he was busy – the rain had pushed all his other jobs back, and he was playing catch up.  He said call him on a Thursday, and he might be able to come Friday. I started calling other crane companies, and even thought I would rent a telehandler and do it myself. All the other crane companies were busy too. In the end, learning to drive the telehandler and maneuver rafters seemed like too much.

All we could do was pray. We had nice weather, the rafters were ready, the RP was stable. But we had no crane available. I had faith that one of the crane companies would have an opening Friday, but they all claimed it would be another week. Thursday, I got a call from the original crane guy, and he said he couldn’t sleep at night thinking about how dangerous what I was doing was. He said for that reason, he had to say no. But I wasn’t dismayed. I called another crane company, and the office lady took all my info and said someone would call. A couple hours later, and a guy calls- says he’s out there at my property, sizing up the job. “You’re going to need a big crane.”

“Can you come tomorrow?” I asked.

“Yeah, we can make it.”

Part II: (link will be active in a few days!) we get the rafters up.

RPSL’s installed

42872460232_efbfd8dca0_b

Another small milestone. Just two more logs so far, but wow, it was not easy.

Background

RPSL’s are Ridge Pole Support Logs- their job is to hold up the Ridge Pole (RP)- the largest, longest, straightest, heaviest log in the entire build. They are very important logs, and must have no defects and be very straight. I estimate the Ridge Pole I’m going to use to be about 5 tons (for comparison, the heaviest wall log was around 3 tons). Vertical compression strength for a 12″ log averages around 650,000 lbs (about 325 tons), whereas the horizontal strength of a 12″ log averages around 20,000 lbs (about 10 tons) over a certain span. Sorry for all the math, but what this means is you can have very skinny looking RPSL’s, and they will still be strong enough for any RP.

DSCF0590

For a 40×40, the three RPSL’s are installed on three specially sized piers- 2 RPSL’s at the walls, and one in the middle. Before I poured the concrete, the inspector came out and he didn’t like the pier size specified in the plans. He wanted them one foot deeper in the ground (meaning one foot taller). He also wanted the RPSL to stand completely on the pier with no overhang. I did one better- I made them 5.5′ square on the base, and 5.5′ tall, and almost 20″ of support for the RPSL. They are about 2 feet in the ground. I estimate the roof at about 80,000 lbs. The piers on the plans should hold about 50,000 lbs each. I estimate my beefy upgraded piers at about 70,000 lbs each.

Getting ready

We looked at all the logs we had left and didn’t like what we saw. Julie wanted me to cut some new logs for RPSL’s. She found a reasonably straight tree, but when I cut it down, it had an awful (awful for an RPSL, but really good for a wall log) bend in it. After looking at it over and over, we decided to use it anyway. I found another tree for the second RPSL and cut it down as well. We will put the third RPSL up after the RP is installed. I was able to cut each RPSL and peel it in one night.

27408173307_80296bca4e_b

It went well, except when I tried to turn one of them with my ‘can’ hook- stupid thing was so slippery from being freshly peeled that it slipped when I was turning it- it sprung back to its resting position, catching the arm of my can hook, and slammed it into my collar bone, instantly dropping me to the ground. I laid there in a daze for a few minutes before I was able to move. When I thought I could move, I felt my collarbone, thinking I broke it, but it didn’t appear to be broken. But the pain was so intense, I was light headed and thought I might lose my cookies. Luckily, I recovered enough to drive home, and was back to work the next day- but with an awful looking bruise.

 

 

This slideshow requires JavaScript.

Installing the RPSL’s on a 40×40 is interesting- since we are building a two-story home, the top of the wall is 20′, and our roof pitch makes the final height of the RPSL about 30′. You can easily slide a 30′ RPSL under the house, and then stand it up on the inside. I hung a pulley from the wall at 20′, and proceeded to lift the RPSL into place. But the darn thing was top-heavy somehow, and I found I needed two additional pulleys to stop it from spinning like a propeller.

Another thing was the rebar coming up out of the pier that attaches to the RPSL was in the wrong place. It was a guessing game from the beginning: The 3 oversized piers have double duty- the two on the perimeter hold up the wall logs and also hold the RPSL’s. The one in the middle holds an RPSL and a girder support log (for the second floor support). Unless you use logs that are uniform in size (like telephone poles I guess), there’s no way you can know ahead of time where the center of the RPSL will be, and so you can’t know where to place the rebar into the pier when you pour the concrete.

The solution was:

  1. Cut the rebar off from the pier
  2. set the RPSL in place temporarily onto the pier
  3. measure where the RPSL will sit (you want it exactly perpendicular to the wall, plumb, and as close to the wall logs as you can get
  4. lifting the RPSL back up off the pier
  5. drilling a hole in the pier with a hammer drill
  6. squeeze the structural epoxy into the hole
  7. put a stick of rebar in the hole so that 12″ sticks out the top, wait  5 minutes for it to set up
  8. drill a hole in the bottom center of the RPSL where you marked it in step 3
  9. re-install RPSL onto the rebar
  10. re-check that RPSL is centered and plumb and lines up with the other RPSL
  11. check again just to be sure
  12. bolt RPSL to wall on every other wall log

 

 

This slideshow requires JavaScript.

Since our wall logs are so tapered and crooked, the RPSL doesn’t butt up against the wall next to every log. So instead of settling for the ugly look of all-thread between the RPSL and the wall logs, another nice idea from the LHBA forum was to install black pipe in between the gaps, giving it a nice uniform look. It was not easy, but it was worth it. I may counter sink the nuts and washers and put nice plugs over the holes, but I can do that any time.

New tools

28608173678_6ce5a4dac3_b
world’s My longest drill bit

Drilling a 5/8″ hole through a 24″ log, and then onto another 20″ log presents another challenge- I needed a longer bit- like 48″ long at the minimum. I went to the orange box people – $75 for one of those! wow! I went down the regular drill bit aisle and found a short one for $12. Then I went over to the neighbor’s and welded a 4′ stick of rebar to the drill bit. I ground down the chuck end so it would fit in my 1/2″ drill. It worked very well- just had to back it out of the hole 20 times (flutes were too short to get the shavings all the way out). No matter, it wasn’t too bad, and went pretty quick- after I got my scaffolding in place.

Capture

Yeah- scaffolding. Even though I don’t have temporary flooring in place and moving the scaffolding right now is a pain, the ladder is just dangerous for trying to drill horizontal holes – it’s usually too far away, or too close because of the angle of the ladder. The 13 amp drill I use can break your wrist if you don’t hold it right. Scaffolding will be invaluable when we get to chinking and a thousand other tasks coming up. And I got the scaffolding from California for about $600, including shipping. I love Craigslist.

28784371898_b6bfcbf539_b

Next steps

I was going to go right onto getting the RP installed, but from what I’ve discovered, I should get my rafters ready before I call the crane. Yes, I’m calling in the big boys. I wanted to do this all myself, but a couple of realities have surfaced in my mind:

#1: I don’t want to die installing a 5 ton log 30′ in the air, balancing it on 2 RPSL’s. This is seriously heavy stuff. Yes, the wall logs were heavy, but not this heavy. Lots of things could go wrong.

#2: I would have to spend $260 on 2 chain hoists (I need some 5 ton hoists for the RP), plus $160 on 2 new 13,000 lb chains. That’s over $400. The crane guys say $130/hr, 4 hour minimum. That’s just over $500. I think my life is worth at least $100.

#3: I can probably get the RP and all 28 rafters installed with a crane in about 4 hours. If I do it myself, I figure a couple weeks getting the RP supports in place, and about a month to get the rafters up. Saves me a month of work, for just a little extra $$$.

We are nearly out of trees that are straight enough for rafters, so I talked to one of my neighbors- she’s letting me have probably a dozen more trees from her 5 acres for my rafters, if I bring her a plate of stuffed lasagna shells my wife made.  I think there are probably a dozen (trees, not stuffed lasagna shells- stay with me) on my property, and probably about half a dozen on the next door property. I just have to cut them, move them, rack them, and then mill them into 4×12’s (work= yes, but I don’t have to peel them – yay!).

Stay tuned. I’m sure there will be a video of a crane and a 5-ton log flying over my house in the near future….