RPSL’s installed

42872460232_efbfd8dca0_b

Another small milestone. Just two more logs so far, but wow, it was not easy.

Background

RPSL’s are Ridge Pole Support Logs- their job is to hold up the Ridge Pole (RP)- the largest, longest, straightest, heaviest log in the entire build. They are very important logs, and must have no defects and be very straight. I estimate the Ridge Pole I’m going to use to be about 5 tons (for comparison, the heaviest wall log was around 3 tons). Vertical compression strength for a 12″ log averages around 650,000 lbs (about 325 tons), whereas the horizontal strength of a 12″ log averages around 20,000 lbs (about 10 tons) over a certain span. Sorry for all the math, but what this means is you can have very skinny looking RPSL’s, and they will still be strong enough for any RP.

DSCF0590

For a 40×40, the three RPSL’s are installed on three specially sized piers- 2 RPSL’s at the walls, and one in the middle. Before I poured the concrete, the inspector came out and he didn’t like the pier size specified in the plans. He wanted them one foot deeper in the ground (meaning one foot taller). He also wanted the RPSL to stand completely on the pier with no overhang. I did one better- I made them 5.5′ square on the base, and 5.5′ tall, and almost 20″ of support for the RPSL. They are about 2 feet in the ground. I estimate the roof at about 80,000 lbs. The piers on the plans should hold about 50,000 lbs each. I estimate my beefy upgraded piers at about 70,000 lbs each.

Getting ready

We looked at all the logs we had left and didn’t like what we saw. Julie wanted me to cut some new logs for RPSL’s. She found a reasonably straight tree, but when I cut it down, it had an awful (awful for an RPSL, but really good for a wall log) bend in it. After looking at it over and over, we decided to use it anyway. I found another tree for the second RPSL and cut it down as well. We will put the third RPSL up after the RP is installed. I was able to cut each RPSL and peel it in one night.

27408173307_80296bca4e_b

It went well, except when I tried to turn one of them with my ‘can’ hook- stupid thing was so slippery from being freshly peeled that it slipped when I was turning it- it sprung back to its resting position, catching the arm of my can hook, and slammed it into my collar bone, instantly dropping me to the ground. I laid there in a daze for a few minutes before I was able to move. When I thought I could move, I felt my collarbone, thinking I broke it, but it didn’t appear to be broken. But the pain was so intense, I was light headed and thought I might lose my cookies. Luckily, I recovered enough to drive home, and was back to work the next day- but with an awful looking bruise.

 

 

This slideshow requires JavaScript.

Installing the RPSL’s on a 40×40 is interesting- since we are building a two-story home, the top of the wall is 20′, and our roof pitch makes the final height of the RPSL about 30′. You can easily slide a 30′ RPSL under the house, and then stand it up on the inside. I hung a pulley from the wall at 20′, and proceeded to lift the RPSL into place. But the darn thing was top-heavy somehow, and I found I needed two additional pulleys to stop it from spinning like a propeller.

Another thing was the rebar coming up out of the pier that attaches to the RPSL was in the wrong place. It was a guessing game from the beginning: The 3 oversized piers have double duty- the two on the perimeter hold up the wall logs and also hold the RPSL’s. The one in the middle holds an RPSL and a girder support log (for the second floor support). Unless you use logs that are uniform in size (like telephone poles I guess), there’s no way you can know ahead of time where the center of the RPSL will be, and so you can’t know where to place the rebar into the pier when you pour the concrete.

The solution was:

  1. Cut the rebar off from the pier
  2. set the RPSL in place temporarily onto the pier
  3. measure where the RPSL will sit (you want it exactly perpendicular to the wall, plumb, and as close to the wall logs as you can get
  4. lifting the RPSL back up off the pier
  5. drilling a hole in the pier with a hammer drill
  6. squeeze the structural epoxy into the hole
  7. put a stick of rebar in the hole so that 12″ sticks out the top, wait  5 minutes for it to set up
  8. drill a hole in the bottom center of the RPSL where you marked it in step 3
  9. re-install RPSL onto the rebar
  10. re-check that RPSL is centered and plumb and lines up with the other RPSL
  11. check again just to be sure
  12. bolt RPSL to wall on every other wall log

 

 

This slideshow requires JavaScript.

Since our wall logs are so tapered and crooked, the RPSL doesn’t butt up against the wall next to every log. So instead of settling for the ugly look of all-thread between the RPSL and the wall logs, another nice idea from the LHBA forum was to install black pipe in between the gaps, giving it a nice uniform look. It was not easy, but it was worth it. I may counter sink the nuts and washers and put nice plugs over the holes, but I can do that any time.

New tools

28608173678_6ce5a4dac3_b
world’s My longest drill bit

Drilling a 5/8″ hole through a 24″ log, and then onto another 20″ log presents another challenge- I needed a longer bit- like 48″ long at the minimum. I went to the orange box people – $75 for one of those! wow! I went down the regular drill bit aisle and found a short one for $12. Then I went over to the neighbor’s and welded a 4′ stick of rebar to the drill bit. I ground down the chuck end so it would fit in my 1/2″ drill. It worked very well- just had to back it out of the hole 20 times (flutes were too short to get the shavings all the way out). No matter, it wasn’t too bad, and went pretty quick- after I got my scaffolding in place.

Capture

Yeah- scaffolding. Even though I don’t have temporary flooring in place and moving the scaffolding right now is a pain, the ladder is just dangerous for trying to drill horizontal holes – it’s usually too far away, or too close because of the angle of the ladder. The 13 amp drill I use can break your wrist if you don’t hold it right. Scaffolding will be invaluable when we get to chinking and a thousand other tasks coming up. And I got the scaffolding from California for about $600, including shipping. I love Craigslist.

28784371898_b6bfcbf539_b

Next steps

I was going to go right onto getting the RP installed, but from what I’ve discovered, I should get my rafters ready before I call the crane. Yes, I’m calling in the big boys. I wanted to do this all myself, but a couple of realities have surfaced in my mind:

#1: I don’t want to die installing a 5 ton log 30′ in the air, balancing it on 2 RPSL’s. This is seriously heavy stuff. Yes, the wall logs were heavy, but not this heavy. Lots of things could go wrong.

#2: I would have to spend $260 on 2 chain hoists (I need some 5 ton hoists for the RP), plus $160 on 2 new 13,000 lb chains. That’s over $400. The crane guys say $130/hr, 4 hour minimum. That’s just over $500. I think my life is worth at least $100.

#3: I can probably get the RP and all 28 rafters installed with a crane in about 4 hours. If I do it myself, I figure a couple weeks getting the RP supports in place, and about a month to get the rafters up. Saves me a month of work, for just a little extra $$$.

We are nearly out of trees that are straight enough for rafters, so I talked to one of my neighbors- she’s letting me have probably a dozen more trees from her 5 acres for my rafters, if I bring her a plate of stuffed lasagna shells my wife made.  I think there are probably a dozen (trees, not stuffed lasagna shells- stay with me) on my property, and probably about half a dozen on the next door property. I just have to cut them, move them, rack them, and then mill them into 4×12’s (work= yes, but I don’t have to peel them – yay!).

Stay tuned. I’m sure there will be a video of a crane and a 5-ton log flying over my house in the near future….

 

 

Advertisements

Cap Logs Installed!

40998587265_9c26028ed6_k

Our cap logs are installed- this means we are almost ready to enter a new phase of construction. It has been a long hard road. Some folks at LHBA claim we are moving at “one gear below breakneck speed” using our lifting poles, but it often doesn’t feel that way…

What are cap logs?

Cap logs are the final logs on the walls. In the photo above, they are the ones that stick way out on the front of the house. Paired with ‘double-butt logs’, they hold up the roof rafters, and give the roof enough overhang to protect the wall logs from rain. In a kit log home, they usually don’t stick out much, but for a butt & pass log home – with an expected lifespan of 350 – 450 years – they are a major part of that lifespan.

Notes on installation

Our plans are for a 40’x40′ cabin. The overhangs on the roof protrude out 7 feet past the walls on the gable ends, and about 4 feet out on the eave side. This means the cap logs have to be 7’+7’+40′ = 54′ long. Also, they need to hold up the roof rafters, so my goal was to make sure they were 12 inches minimum on both ends. With our tapered logs – this meant that the butt end would have to be absolutely huge to ensure at least 12 inches at the tip. This would also throw off our level layers (all 4 corners should be the same height).

This slideshow requires JavaScript.

The solution I came up with was to take two normal sized logs, splice them together and put them up as one log together, and let the butts hang out over the ends.

Easier said than done. How do you lift half of a log when the lifting poles are in the corners? In other words, how do you hold up a log in the middle of the house where there are no lifting poles? Easy (not easy)- you chain both together and lift them at the same time.

Although I could have (maybe) installed a temporary center lifting pole- this would take a lot of energy and time- I would basically need a 30′ lifting pole (the size of an RPSL) installed. It would need to be chained to the wall, along with pulleys, etc. Lots of work for something I would use once. So I decided to try everything else before this idea.

26745033927_0b14396a65_k

Using a cradle (suggested by Plumb Level), we were able to “safely” hold the logs in place while we pinned them. I won’t go into the details (unless someone is dying to know), but there were a lot of scary moments- like once I got the chained logs in place, I had to remove the unused portion of each log- this involves cutting the excess of the log, and hoping the desired portion just falls into place, with no way to chain it or support it until it was in place. The cradle helped a lot, but there were no guarantees.

Some unlucky (and funny) events from Course 13

First there was the “pinned boot” incident:

40508479954_e53e5b1051_k

There was a gap in the log I was working on. I was perched up on top pinning it into place, and my boot happened to be placed right where the pin was coming through. Once they go in, they don’t come out. It didn’t pinch my foot- just the edge of the boot- and tight enough that I couldn’t get my foot out. I was stuck. I called for Julie’s help. Now she is not normally one to climb ladders of any size, but she courageously started to climb. She was clinging to the ladder like she was a thousand feet off the ground. I kept encouraging her and she finally climbed up high enough to hand me my crowbar, and I was able to loosen the pin just enough to free my boot. LHBA folks suggested I just leave it there and chink around it, ha ha! ……No.

We had this log that was the right dimensions, but had a nasty hook in it at the tip. No matter how we rotated it, it wouldn’t lay flat. We decided to pin it anyway, and just deal with it later. It ended up being flat most of the way, until about 6′ from the end where it had this big bow in it. Since that corner (NE) has been historically low, we decided having the extra height in the corner would help get the height back up to where it needed to be. But since you can’t accurately measure the height on an odd row, we’d have to wait until layer 14 to find out if it was helping or not. And it is: before the cap logs, our heights worked out great- starting at the NE corner and going clockwise, we have 17’8″, 17’8″, 17’7″, 17’7″. For non-builder types- this means the East and West sides match each other exactly for height, while between the two sides, we are off by 1 inch. Remember- this is all using tapered crooked logs with knots and bends- a real testament to the Butt & Pass method.

And the burned out motor on the drill incident: It is a Black & Decker 1/2″ drill that didn’t really want to drill 300 holes, but it held up for the most part, and then just gave up with the drill bit lodged 12″ down in a log.  So I left it stuck up there; “sword in the stone”-like, for the weekend. I figured more power to the idiot who decides to try and steal it. There were no takers.

And five minutes later, the “what the heck happened to the jack hammer” problem: it just lost power in between pounding rebar. I took it home- I guess all the vibration and the weight on the cord from being up so high pulled its guts loose from the switch. I put a new clamp on the wire, taped it in place, and then put the handle back on. Then I taped the cord to the handle on the outside to alleviate some of the stress.

What’s next

The final height of our cap logs determines the final headroom height at the top of the stairs, since they are on the eave side of the house up against the wall. It works out to be (starting at the NE corner and going clockwise): 18′ 4 1/2″, 18’6″, 18′ 5 1/2″, 18′ 4 1/2″. Pretty good.

Now we finish with double-butt logs – these are not logs with 2 butts on them- they are logs that, instead of being normal “butt and pass” logs, are just logs that butt up against their neighbor logs on both ends. In this case, the logs they butt up against are the cap logs.

After that, we begin the next phase: installing the RPSL’s (Ridge Pole Support Logs). Two of these get bolted to the walls. Along with one in the middle. They are 30′ tall, and they hold up the Ridge Pole – which holds up the rafters and the roof.

The Ridge Pole is a monster sweet gum tree from our woods. It is by far the biggest heaviest longest and straightest log I’ve ever cut down. So far, it has evaded me being able to move it. But it won’t for long.

We also need to commit to a height for our girder log. This log spans the width of the house and holds up the 2nd floor. It also ties the East and West wall together so the rafters don’t push the house apart. It provides the “rigidness” that keeps the house tight. At least a little.

I don’t want to think too far, but I’m hoping we can get the roof on this summer.

We had a lovely visit from some LHBA members- Gary (Mosseyme) from East Tennessee came and looked one day in the rain and gave me a lot of good tips, and encouragement. Also, ‘Sdart’ on the LHBA forum- Sara and Rene were very nice and came out to see our progress. They are building in extreme Northern Idaho in an off grid location. They have been to many LHBA homes over the years all over the country and Sara told me, “even after looking at pictures, these homes are always impressive in person.”

Almost done with 1st floor logs

 

We’re nearing another crossroads- the logs are about 12 feet off the ground, which means they are about 9 feet up from the piers, and about 8 feet up from the finished floor height. All of which means we have to start thinking about the second floor. But first, I’ll summarize what’s happened since my last post.

36680426186_acbd282bde_k

Improving techniques

Jack hammer is pretty good

The jack hammer cost me about $130. I don’t know if it’s a monster jack hammer or just a regular one, having never owned a jack hammer before now. But it is definitely heavy- I think it weighs close to 50 pounds. I also ordered a “rod driver bit” to go with it. The rod driver bit is usually for driving electrical grounding rods into the ground. If your home was built in the last 20 years or so, you probably have one of these- it’s to prevent an electrical surge from frying the wiring in your house. The contractor will hammer a 6 foot piece of (usually) copper into the ground, and the easiest way to do it is with a jack hammer.

36173202440_19f0f25657_k

Driving rebar into logs is pretty much the same idea. The bit is just a shaft with a cylindrical hole in the end that fits over the rebar. I drive the rebar as far as I can into the log which leaves about 3 inches for me to finish pounding in by hand, which is very do-able, and it sure beats pounding the whole 20 inch piece of rebar with a sledge hammer. Instead of taking about 8 minutes per rebar, it now takes about 10-20 seconds with the jack hammer, and then about 1 minute with the sledge hammer. So I can finish pinning an entire log in about 30 minutes, instead of about 2 hours. And not as tired, either.

35892204874_f8dcd262d7_k1

Chainsaw needs some adjusting

Last night, my neighbor was asking how it’s going- I told him slow.  When making any straight down cut with my chainsaw lately, the saw wants to veer off towards the left and do this weird curvy cut. The neighbor asked if the blade was straight- yeah, I just bought it about two weeks ago. Then he asked when the last time I sharpened it, was I sitting behind the saw or in front of it? Ummmmm- I was sitting behind it. He said try sharpening it with the blade facing me- sitting behind it makes one set of teeth uneven. Huh. I had no idea, so I tried it on Saturday: I cleaned the whole thing, sharpened it, and went that afternoon to make some cuts- nope. Still curvy. My other saw- the McCollough- gave up the ghost. The repair shop said the piston and rings are no good, and the saw is so old, they don’t make parts for them. I’m going to try another blade and chain on my Husky, since it looks like I’ll be using this saw for quite a while yet.

What are temporary lifting poles?

This is a necessity. What happens is this: all of our logs are crooked, and we are using the crookedest ones first because of all the doors and windows on the first floor- the doors and windows make it easy to cut the crookedest part of the log right at the door or window, and then roll the log this way and that way to make it sit better and get it straightened out for pinning.

The problem is that when you cut a log in the middle, you have to support it somehow. With the lifting poles in the corner, you need something temporary to hold the log at the cut so it doesn’t roll off the wall. So I use the last 10 – 15 feet of a log as a temporary lifting pole, and stand it up on the pier. I chain-bind it to the existing wall logs, and put a pulley or chain hoist on top and suspend the log I’m about to cut with it. I make the cut, do any adjusting to straighten out the bows or knots, and then pin the log. Then I take down the lifting pole and use it for the next location.

35917504683_eacec3339d_k
see the short temporary lifting pole on that almost center pier?

Plans change…

We wanted a back door, we didn’t want one….Now we want one. While stacking logs, it became apparent that if we added a door on the back of the house, we could use more logs that were crooked. We also redesigned the kitchen- now, instead of separating the laundry room from the kitchen with a wall, we took out the wall between the kitchen and laundry on the plans, and opened up the laundry area and kitchen to each other. Now, when you enter the house from the side-back door, the laundry is on the right, and the kitchen is on the left- opening up a lot more space. I still need to update the CAD drawings, but I’ll get to it eventually. So far, the inspector hasn’t come out and asked to see the plans, and the copy I emailed him- well, he said it was too small to read. If I update them before he asks for them….I guess he’ll never know the difference?

Next item, please

At this point in their builds, many LHBA members begin to put in the RPSL logs that hold up the roof. These logs are bolted to the wall logs at the front and back center of the house, and will be 30 feet tall in our case. The reasoning on why to put them in at this point is that if the walls are higher than the fifth or sixth course, it’s too hard to get them over the wall. In our case, with a pier foundation, we can just slide them under the house, then lift them up on the inside. Our “advantage” is that our house is forty feet long, which makes it easy to work with a thirty foot log inside it. Our other “advantage” is that we are using lifting poles and block and tackle instead of a telehandler.

NC-3187-540-170

I put “advantage” in quotes because most folks using a telehandler would snicker about how these two items- a forty foot home and lifting poles – are an advantage.

But they would probably admit that I’m right in this case. Of course, they would say all the advantages of otherwise having a telehandler outweigh these two drawbacks, whereupon I am reminded that a cheap telehandler is about $8,000 (I’m guessing the one in the photo would be about $70K+), whereas my lifting poles were free, and my lifting equipment was about $400. Sure, they’re slow, but I’ve already had a guy who is using a crane on his build state that I’m stacking faster than he is. Weird.

I guess we’ll wait to do the RPSL’s. The book shows a diagram of how to lift the girder log and RPSL’s and the ridge pole into place using nothing but block and tackle. Sort of a step-by-step. It looks like if we finish the walls first, we can use the walls to attach rigging anywhere we want and get the RPSL’s “just so”. If I try to get them in now, the only thing I have that’s taller that the RPSL’s now is my corner lifting poles, and I don’t want to put that much lateral force on the poles- they could snap off if I lift something very heavy too far away from their centers.

36680425856_13c78431d0_h
While we weren’t watching, she was having fun with the camera…..

That’s where we’re at for now. Feel free to comment below.