Roof – Part 4 of 4: Shingles

P_20190620_194031.jpg
yes, I know- it’s not 100% perfect. But it’s pretty good.

Whew. That was hard. I’m now officially “under roof”. I knew the roof would be a multi-part series, but it was more long and drawn out than I thought.

I am now far behind my goal for finishing the home in 2-3 years. In fact, I thought back in October that I might be able to finish the roof by the end of 2018. We are now halfway through 2019.

On the bright side, I’m still within budget, and now that the roof is done, I can take a breather and finish projects I left hanging like installing a motor in my pickup. Also, much of the remaining work can be done on the ground – no more dragging construction materials up to the roof. How much did I drag up there? I won’t bore you with the details, but I estimate about 35,000 lbs, not including tar paper, nails, screws and insulation. Along with the ~22,000 pounds of rafters, and the 10,000 pound ridge pole, this puts the weight of the roof around 67,000 pounds.

P_20190621_174439

The shingle elevator saved my back and knees. I put 109 bundles of shingles on the roof. Each bundle weighs about 60 pounds. With the shingle elevator, I was able to load three or four bundles at a time, hook the rope to the car and back up, and then climb the ladder and off-load them onto the roof.

Here’s the shingle elevator in action.

Also, since my roof is not exactly square, I had some issues keeping my shingle lines straight when I got to the ridge. But I noticed when watching some how-to videos that the professionals have issues with non-square roofs as well, so I feel pretty good about my not-perfect roof.

We still need to clean up the inside of the house- I’ve got scraps of foam in there, extra lumber, plywood and a lot of junk leftover from installing the roof. I noticed during a rain storm that the ground on the West side of the house is a bit higher right along the drip line than the ground is inside the house. The rain was running down to the inside of the house. I think I’ll ask the neighbor to bring his disc-harrow over and plow up that side, and then I’ll shovel the dirt to the inside of the house. That way, the inside will be just a bit higher than the outside, forcing the water to run the other direction.

I think the very next step is to trench the sewer, water, and maybe electrical. It’ll certainly be no fun to trench if I wait until after I get the subfloor in. And then I need the floor joists and the hangers, the insulation, etc., etc.

A guy I met in a sawmill group on facebook offered to make my second floor beams for really cheap. He’s in Georgia and said he’ll deliver them. I’m not ready for them, but the price is so good I can’t pass it up. I’d make them myself, but I’m currently out of trees.

Other things that need to be done in no particular order:

  • frame in the gables
  • install 1st floor
  • install 2nd floor
  • stairs
  • interior walls
  • plumbing
  • electrical
  • doors / windows
  • chinking
  • porch
  • pass inspection

Sigh. The really cool part – cutting down trees, making pulleys, stacking the walls, installing the ridge pole, decking the roof- is over. From here on out, it’s almost all just normal 2×4 construction- framing, cabinets, hardwood floors, tile, plumbing, etc.

And sorry, but roof pictures are kind of boring:

P_20190620_195247_BF
That smile is telling you I’m done shingling.
Advertisements

Roof – Part 3: Installing almost everything on the roof

P_20190326_181010[1]
roof box frame. Eventually, I’ll remove that errant little scrap of 2×10 nailed to the rafters.
box frame for insulation almost complete

The shingle elevator was made out of wood, and it broke after the week of rain weakened it. So I welded a new one. It works better, but I’m worried about the rails it rides, which are 22 foot long 2×10’s.

P_20190315_181844[1]
New lift can be bolted onto the rails.
I’ve made a lot of progress on the roof- the frame is complete, the insulation is completely installed on both sides. I had to stop and measure how much insulation I had left- and use the hot wire foam cutter to cut the 9″ thick pieces down to size – they were too thick to fit in the boxes. Also, I had plenty of 5″ thick pieces, but not enough 7.5″ pieces. I found that 7.5″ is the sweet spot- the foam has a stated R-value of 4.6 per inch, so a 7.5 inch thick layer gets me R34.5, where only R30 is required. This doesn’t count the value of the 2″ thick decking, or the plywood, or the underlayment, which doesn’t add much, but does add some. To make the 7.5″ thick foam, I set the wire at 7.5″ above the cutting deck, then stacked two 5.5″ pieces on top of each other and fed them through the foam cutter to make a 7.5″ stack. I have enough foam left over for a very well insulated chicken coop.

Some folks have spent thousands on their insulation- even when buying used. I was able to get away with $400 for all the foam I could stuff into a huge U-haul van and my trailer pulled behind. Extremely cheap!

Problems

2x lumber isn’t what it says it is….

I wish I had thought more about the fact that a 2×10 and  2×8 were really 1 1/2×9 1/4 and 1 1/2×7 1/4, because that threw off some of my measurements. See, the ribs are 2×10’s, spaced 48″ OC apart. But the plywood is only rated to span 24″, so I needed a support between the 2×10’s. I didn’t want to just space  the 2×10 ribs at 24″ because that messes up my 48″ foam, and a 2×4 is a lot cheaper than a 2×10 no matter how you slice it. Besides, a solid piece of foam is a better insulator than a skinny 24″ strip of foam- that’s just simple physics.

Anyway, I planned to just put an 8′ long 2×4 between the 2×10 ribs, on top of the 2×8’s as a support, because the height of a 2×8 cross member + a 2×4 = height of a 2×10, right? wrong. There’s a 2″ vertical gap between the 2×8 & the 2×10, but the 8′ 2×4 laying on top of the 2×8 cross member is only 1 1/2″ thick, so there was a 1/2″ gap I had to fill between the top of the crossmember and the top of the 2×10 rib. I admit I actually couldn’t figure out at first why my plywood was sagging in the middle between the ribs. Oops.

Getting everything on the roof

Yes, this continues to be a problem. There are multiple solutions, but the main thing to remember is to keep the main thing (building the roof) the main thing. It’s easy to dream about a jib crane or some contraption with a winch motor that lifts everything up on the roof at the push of a button, but at the end of the day, the question isn’t “how did you do it?” as much as it’s “Did you do it?”. Sigh…..Up and down the ladder.

P_20190417_182954[1]
I would have used the shingle elevator, but it is on the opposite side of the house. Besides, I only needed 5 sheets for this part.
I figured out that I can lift four sheets of foam at a time with just a rope. So that helps. But the plywood is dangerously unwieldy, so I could only manage 5 sheets at a time using the elevator, or in the photo above, one at a time. In this case, it saved me carrying it from the elevator, up over the peak, and then down to be installed. You do what you have to do to get it done.

And the 2x lumber- well, I can lift about 30 of those at a time with the elevator, so that’s nice.

Nevertheless, I do have backup plans for a jib crane to lift shingles in case the shingle elevator goes kaput.

p_20190423_1757311.jpg
The ribs, foam, OSB, and you can just barely see the 2×4 spacers sticking out under the OSB.

Solutions

I added a 1/2″ x 1″ spacer to the 2×8 to lift the 2×4 up to the correct height. And on the boxes I hadn’t finished, I went ahead and lifted the 2×8 so that when I added the 2×4, it would be level with the 2×10. If I ever do this again…..

Using my Magnesium oil almost daily to stop the aches and pains of going up and down the ladder. It’s amazing stuff- helps the muscles heal, and protects joints.

I’ve used the car to run the elevator- just tie a rope to the front of the car, the other end goes to the pulley attached to the lift. Then back up, and everything goes up. Once it’s at the top of the lift, I climb the ladder and unload the supplies onto the roof. I carried almost every 4×8 sheet from the West side of the roof, up over the peak of the roof, and then down onto the East side of the roof. That was no fun, especially when it was a bit breezy.

I’m not sure how lifting shingles will end up- they are pretty heavy – about 60 lbs for each bundle. There are 99 of them…

Vent holes

P_20190416_174311[1]

I cut these in the roof to enable cool air from the ground to flow up the side of the house, into the roof, and out the peak. I made a template out of a scrap of T&G decking, then cut rectangular holes and covered them with heavy duty screen door mesh plus 1/4″ wire mesh. Here’s a video describing the theory of ventilation.

…And a change in roof design

This slideshow requires JavaScript.

When looking at the roof from the ground, you don’t see the built-up part of the roof, at least from the front of the home. This makes the roof look thin and wimpy.

As an aside, I’ve several folks pull up and ask about the house, and if they ask about the roof and the T&G decking, they always assume I used 1×6 planks. They are always surprised when I show them a scrap and they find it’s actually 2×6 planks. I get about one visitor a week that actually pulls up and wants to ask questions, while I get a half dozen gawkers who stop in the road to take a look or a photo. I’m always happy to answer questions- to me, the LHBA method is the best method for getting a really cheap house that has tons of value.

The last one that pulled up really made me think about this- yes it’s vain to build up the whole roof just for looks. On the other hand, the whole thing is probably vain, if you want to take a minimalist view- I mean, I could have just plopped a mobile home on the property and said, “done”, right? But let’s stay focused here- I started looking at the roof, and decided they were right. I asked my wife about it, and she immediately said, “I’ve always wanted the whole roof to be thick.” She knew the whole time, but just didn’t want to make an issue out of it. Yes, I can usually finish the maze a few seconds behind the rats….

“It’ll be a lot more work,” I said.

“I know.”

“And a bit more expensive – like $500 more.”

“I know.”

She doesn’t want to pull up and look at the wimpy roof and hate it every time she comes home. I agree.

It also simplifies the drip edge and other issues I was having with making nice clean looking roof lines.

So….I ordered more lumber, plywood, tar paper, etc. Don’t need any more shingles, luckily.

More problems

When I added the extra 2×10’s to the roof, I found that the roof decking isn’t exactly flat. Big surprise? No, not surprised. I’m actually surprised that the gap was 2″ or less. Probably due to my 5×12 rafters not being perfect or something.  Anyway, to stop the critters from getting in there and make it look purdy, my wife gave me an idea – “why not put a piece of angled metal up there and screw the 2×10 to it, and then screw it to the deck?” It was a great idea, in fact:

This slideshow requires JavaScript.

That’s all for now…Next up: I’ll finish shingling the roof.

 

Roof – Part 1: Decking

3fd69e2628cd63aea9c5

Buying the Decking

I searched high and low for a good price on the decking. The plans call for 2×6 Tongue & Groove, preferably in 16 foot lengths. Yes, 2 inches by 6 inches. It sounded really thick, and when I started looking on Craigslist, I could only find advertisements for 1×6. I checked the plans- nope, 2×6. I called the orange box people – they don’t sell it, and can’t even order it. I checked local mills, but you need a large volume mill – the equipment to make it is expensive. I finally found a supplier in Guntersville- just a few miles down the road. They had it for about $0.95 per foot. I ended up paying about $8,000 for a bunch of it. They delivered and unloaded it for $25.

45232348854_fedcf454af_k

Polyurethane

45956581871_3659ee8157_z

I decided after talking to another LHBA member to polyurethane the boards before I put them up. Otherwise, you can crane your neck and do it after they are installed. That didn’t sound fun, so I laid out all the boards on the ground and bought 5 gallons of water based polyurethane. I actually bought every gallon of water based polyurethane in town. Went to 3 different orange box stores and bought them all out. The blue people didn’t have any. Then I spent 2 days painting them all. Then another day stacking them back up into piles.

44099814450_c491206a5a_z

First layer is the hardest

If you set the first layer incorrectly, when you reach the roof, your decking will be all cockeyed and stuff. The only way I could figure to get it correct was to measure from the exact intersection of the rafters down to the ends of the rafters. I had to “scary climb” up to the Ridgepole, set the tape, throw the tape measure off the house, go down to the ground to get it, go back up the ladder and measure to the end of the rafter. I had to do this 4 times- twice for each end of the house.

Then I ran a string between these two points, and put a nail on the string at each point it touched the rafters. Then I nailed up the first boards, using these nails as stops. After about 6 rows, I had enough to stand on, and now had to think about getting the bulk of the 500 boards up on the roof.

 

This slideshow requires JavaScript.

After all this, when I got up to the peak, it is still off by an inch or two. I figure this is due to not all the tongues and grooves fitting together perfectly. In my defense, there’s about 60 rows of boards on each side of the roof. Stuff is going to get out of wack over that distance. No matter, I’ll trim the last board a bit, maybe add some flashing just in case, and nobody will be able to tell.

Getting it up on the roof

 

This slideshow requires JavaScript.

I tried sneaking it in through the gable ends, but as the rows got higher, I ran out of space. Then I tried with a pulley to pull them up using the ladder as a rail, and the tractor on the opposite side of the house. I finally just pulled them up with a rope and pulley and nailed a pressure-treated 2×8 nailed to the rafters to prevent the boards from gouging the already-installed decking. Video here.

Installation pattern & finishing up

The manufacturer recommends one nail per rafter, 4 foot spacing between rafters, and staggering the joints. The brochure shows a couple of options. I put 2 nails per rafter, and used ring shank nails and a nail gun and air compressor. I also used a skillsaw when necessary to cut the ends off. I still need to go back and trim the decking to a one foot overhang past the ridge pole and cap logs. That will be scary- out on the edge of the roof, sawing the ends off.

Since the rafters are 48″ on center (4′ apart), and the T&G decking is 16 feet long, things tend to match up nicely. Also doesn’t hurt that I made my rafters 5 inches wide instead of 4 inches wide- provides more surface to nail the decking.

 

This slideshow requires JavaScript.

I left the rafters with overlap at the peak until now- it’s too dangerous to trim the overlaps before the decking is on. A friend recommended not trying to pin them until the decking was close enough to the top to provide a place to sit while installing them. It was good advice- even with the decking up close to where I could stand while I pinned the rafters, and even with being tied onto the roof- that 65 pound jackhammer could jump off the rebar at anytime and possibly throw me off the roof. It ended up not helping anyway- that ridge pole made out of sweet gum is very very hard- the jackhammer couldn’t pound the rebar into it. I had to resort to my sledge hammer. Even then, I bent a few pins trying to hammer them into that tough wood. Video here.

Underlayment

Underlayment is either tar paper or a synthetic sheet that allows the house to breathe, but keeps the moisture out. Water gets out of the house, but can’t come in. There’s a lot of debate over exactly where to place the underlayment on a built up roof. Talking with other LHBA members, I decided to place it directly on the decking. Tar paper is good stuff- it’s been in use for a hundred years and works great. But it only has a 30 day UV exposure rating. Knowing how slow I’m going, I needed something with a better rating- the synthetic I went with has a 90 day UV rating. I bought 4 rolls of it: 1,000 sq ft coverage per roll. It was about $60 a roll.

Installing the underlayment means we’ve reached an important point in the build: for the first time, my logs are out of the weather since I cut down that first tree so long ago. It is a huge, huge relief to reach this point. During the first rainstorm after installing the underlayment, I just stood inside the house, listening to the rain, but not feeling it. It is very humbling and satisfying to reach this point. We’ve got a ways to go yet to full “weather proof”, but I’ll take a little victory lap for now.

Next steps

Roof insulation and finishing the roof: I have to decide between solid foam and spray foam. Solid foam might be slightly cheaper, but I have to have a thicker roof- 12″ thick compared to possibly only 6″ thick if I go with spray foam. I also have to install “sleepers”, which are like ribs- they lay on the roof and provide a space for the insulation to lay in.  The sleepers can just be normal 2×6’s or 2×12’s. Or engineered wood I-beams. OSB goes on top of that (if using shingles), or furring strips (if using metal roof).

 

 

 

Leveling Rafters

31672501728_d194f21eae_k

Seems like there’s always more to do…

A few weeks ago, we took a major step forward- we are done with the walls, and we got the Ridge Pole and rafters installed. I’ve spent that past 2 weeks- in between weather events and life- getting the rafters level.

Again, if we were building with 2×4’s, it’d be easy. Building with crooked logs involves a lot of finesse and finagling to get things to look right. There is nowhere to ‘zero’ my measurements, so I have to do relative measurements. For example, the cap logs are actual logs, so they vary and wave as they go along the house, which means the rafters will do the same. The rafters, as I’ve mentioned, vary as well- but they at least have one flat side.

If I don’t ‘square things up’, I’ll end up with a crooked roof. That’s what is eating up my time. And leveling and squaring the rafters is done in 3 parts: setting them at 4′ on center, then leveling at the Ridge Pole, then leveling at the cap logs.

Setting at 48″ on center

When the crane guy was on site, we were paying him a bunch of money per hour, so we decided to just get the rafters close to where we wanted. Later, I went back with a tape and measured 48 inches from front to back, and placed the rafters on this mark. Then I did the same at the cap logs. When matching up the cap log placement of the rafters with the Ridge Pole placement, I found that eyeballing it was better than trying to drop a plumb line and squaring it up that way.

leveling at Ridge Pole

This was more complicated than I thought it would be. There are quite a few variables- roof pitch, Ridge Pole taper, ridge pole bow, rafter size, bolt hole placement, and not to mention working 30’+ up in the air. Dropping tools from that height is a pain. I ended up rigging up a pulley system and buckets and strings tied to the tools and then secured to the rafters. Yes, I wore my fall harness, which was a pain, but would have been more painful to fall.

45201877451_09a2dc6192_k
How far off level are the rafters from each other? Each letter represents a rafter pair. The top line represents how far from vertical they are. The center measurements (marked “E”ast or “W”est) show how off-center they are horizontally. The bottom line represents how deep to cut to overcome these issues.

The goal here was to get them level vertically as well as horizontally. Since the RP is so wide and has a slight bow towards the East, some grooves had to be made in the RP to drop the rafter pairs down to the correct height, and at the same time move it left or right to line up with the other rafter pairs. Cutting  a groove to move the rafter left or right also drops it at the same time. I measured several of them carefully, taking note of the exact placement and diameter of the RP at that point. I used graph paper to virtually drop a few of them a few inches to see what the effect would be before I cut. Once I was comfortable with my graph, I started in on the actual rafters. I used an electric chainsaw (much lighter and easier to maneuver at 30 feet up), and then smoothed the cut with an angle grinder and a rotoclip disc.

They are now all within 1/2″ of level and center.

45213384871_3e666c834a_k

Leveling at Cap logs

I first took a string and a string level and nailed it to the rafters on each end. Then I measured the difference between the height of the string and where it touched the rafters and recorded it in a notebook. The rafter that is furthest away from the string is the lowest, so the next step is to make all the other ones match. Unless they vary by a lot. In my case, the East side of the house varied by 8 inches across the rafters- because it kind of sags in the middle. We knew the m when we put the cap log up, but we didn’t know it was 8 freaking inches. All four corners of the house are within an inch, but it’s the ends and the middle that matters, and that’s where the difference was. There was no way I could cut 8 inches out of a 13 inch cap log- that would weaken it beyond use.

This slideshow requires JavaScript.

To overcome this gap, I jacked up the most offending rafters and installed two 4″x5″x14′ beams that I made on the sawmill and pinned them with rebar. This won’t be seen when the roof is on unless you know where to look because there are other boards called bird blocks that go exactly on top of the beams.

On the west side, I overcame the issue much easier with a 2×4. The rafters rest on these “jacks”, but they are still pinned with rebar through the jacks and into the cap logs.

They are now all level to within 1/2″ of each other.

 

This slideshow requires JavaScript.

Next steps

Before we can install the decking on the roof, we need to install our girder log. This log acts as a ‘collar-tie’ for those in the industry. For non-industry types, the girder log keeps the walls from spreading when the 80,000 lb roof is installed. The girder also holds up the second floor. It can be installed at anytime, once the wall logs reach over the second floor. Those using telehandlers usually install it right when the wall logs reach second floor height. When using ropes and pulleys, it’s easier to wait until the wall logs are done so you have somewhere to hang the pulleys.

Part II: Rafters up- new crane guy

Click here to read Part I (where we get the Ridge Pole up)

They sent Chad out to help.  He asked me about the the guy who set the Ridge Pole (RP). I told him the guy’s name, and he laughed- “Oh, yeah, good ol’ Be***! That guy’s afraid of his own shadow.” I was immediately at ease with Chad. Here’s a guy who knows that stuff like this is dangerous, and harping on it doesn’t make anyone safer. We all know it’s dangerous, and we do it anyway, but we try to work smart.

I told him the plan. “First we’re going to set that middle Ridge Pole Support Log (RPSL) right on this pier. I want you to lift it over the wall, but make sure your cable is on the far side of the RP.”

“Why is that?” he asked.

“Ok, so I figure you can lift up and down, but you probably don’t have much control on the back and forth, so I set up this pulley to do that job, but I need the cable on the backside so we don’t pull it all the way through the bottom of the RP,” I explained.

“Makes sense, let’s do it.”

This slideshow requires JavaScript.

I’m liking this guy. We get the RPSL hooked up, he reminds me to tie a string to the strap to release it once we’re done, and we’re off. We get it set on the pier in a few minutes.  Then he comes in to fine tune it with me, with my wife supervising. With him on the pulley, and me on the cant hook, we get it placed in a few minutes. I climb up to drill and pin, and that’s it.

I took a little break, thinking I had heat exhaustion: the forecast called for 95, and with the heat index, it was closer to 100 F.  I was dizzy up top, and had to stop several times while hammering the pin into the RPSL. While I took a break, Julie asked if her and my daughter could swing on the crane hook. Chad said, “sure, no problem.” Obviously, he’s a very cool crane operator.

45076190772_c0dff23182_k
These cute girls are a ton of fun!

 

Now onto the rafters.

31251417498_59e5ae89a3_b
This is the safest way to install rafters from the ground

I showed him my idea with the loops and the pins. Using this method, I can set the rafters from the ground, and when he releases the pressure on the strap, I can easily just pull on the string, and the pins mostly just fall out. Here’s a video of installing them. Again, he says he’s never seen it done that way, but wants to see what happens. 28 rafters later, he’s convinced to never do it any other way. But I’m getting ahead of myself….

The loop idea works like a charm- I used grade stakes and welded a washer to the end so the string wouldn’t slide off. The string was a 50′ piece of paracord that I could hold onto from the ground, along with the leader rope (which also had a quick release pin). We also ended up tying a wrench to the other quick release string as weight so it wouldn’t get caught on the wall- which happened a half dozen times- I had to climb up to get it, but at least I didn’t have to shimmy out on the rafter, 30 feet up. Releasing the rafter from the ground is much safer.

This slideshow requires JavaScript.

The office sent him out with a 12′ spreader bar, even though I asked for a 20′ spreader bar- this bar keeps the legs of the rafters open so they fit over the walls. But 12 feet wasn’t enough, so we ended up putting the far side on first, and then on the count of “3”, he had me pull extra hard on my leader rope, and he dropped the hook at the same time, and we were able to “launch” two sets over the near wall. But it was taking a long time- it’d been 2 hours, and we’d only set four rafters. He called the office and demanded a 20′ spreader bar. I thought the crane would make things easier. It made it faster, but it was still hard. Here’s a video of installing with the wrong spreader bar. After installing a few rafters, we stopped for lunch.

After the guy brought the 20′ spreader bar, the rafters were going up in about 15-20 minutes per rafter. We had a few that we couldn’t set just exactly right, and we realized that I could just move them with a lever later, so we changed the plan to just get them close enough.

This slideshow requires JavaScript.

After nine hours of work, we were on the last set. People were stopped in the road, watching. Chad’s two sons came over – he lives literally around the corner. He said sheepishly that he should have come over sooner, but he’s glad he was there that day. Nelton’s wife and daughter came over, too, taking pictures and chatting with my wife. When I pulled the last pin out of the last rafter, I couldn’t help but let out a loud, “whoop! Whoop!”, to which everyone cheered. It felt like an old fashioned barn raising.

31251474538_dfcd1a24d5_b

And I got a discount- Chad agreed that we wasted 2 hours with the wrong spreader bar, and that was the crane company’s fault. Also, we got a discount for paying with cash. It was expensive, but very, very worth it.

The next step involves leveling the rafters- the rafters are flat on at least one side, but the RP is tapered and crooked and bowed-  not much, but enough. It’s actually really straight- But it is off by a few inches in spots. That will involve me using string and cutting some of the RP. And then we go for the roof.

 

Part I: Ridge Pole up, but what a struggle

We decided to go with a crane. I’ve written about how dangerous I thought installing the Ridge Pole myself would be, how long it would take, and how expensive it would be.

I took a Thursday & Friday off work to prepare. Thursday- it took me nearly all day to pull the rafters off the rack, bolt them together, and then lay them out in preparation for the crane to lift them.

This slideshow requires JavaScript.

By evening, I had just enough daylight to chain blocks to the RPSL’s as a cradle to hold the RP. But I almost fell when the scaffolding slipped a little, and had to have my wife jump on it to hold it down. Stupid me.

29881055247_9b6a71551c_b

Friday, the crane showed up a little early. I was up on the front RPSL chain binding a cradle to the top to ensure the Ridge Pole (RP) wouldn’t roll off after the crane released it. As I was binding it, I happened to look at the back RPSL and noticed the front pole that I was on was not in line with the back pole- it was off by about 8″. I guess I hadn’t noticed because when we set the poles, we were going for “mostly” perpendicular. Since this was the first time I had climbed to the top, I had never noticed the little hook about 4′ from the top that made it off-center from the rear.

Anyway, crane guy pulled up, and I asked him what he thought. He went and looked, and agreed it was off by about 8″. Leaving it would mean the whole roof wouldn’t be perpendicular to the house. Probably no one would really notice, but I made an executive decision to fix it right then. I told the crane guy to go ahead and get set up, while I loosened the bolts. I had him hook on to the top of the pole so it wouldn’t fall, then set it in the right spot. I eyeballed it, and had him and my wife check as well. When it was all good, I started drilling new holes and attaching the bolts. We used about an hour to do this part.

This slideshow requires JavaScript.

Meanwhile, my wife was using roofing tacks (with big orange plastic heads) to mark every 4′ along the RP, so we could set the rafters from the ground. She also recommended wisely that we leave the 2×4’s we nailed to each end in position- at 12 o’clock (straight up), so we could tell if the RP rolled a bit.

29891832537_f54ea06036_b
roofing tacks on the RP- you can see these from the ground.

Then we hooked up the RP to the crane. The crane guy thought it was best to choke the RP with the straps. I don’t know how else we could’ve done it, but I went with it. After a few attempts at lifting it and setting it down, we found the center of the RP, and up it went. I climbed up to help set it- got on top of the house and guided the RP into place. I measured about 7′ out from the RPSL, but noticed that there was a giant knot right where it would touch the RPSL, so I went with 8′. At this point, I should’ve marked it, and then had him set it down so I could saw a flat spot where it would sit on the RPSL. Part of this was my fault- I was worried about how much it was costing (about $120/hr), and the other part was the crane guy giving me disapproving looks every time I did something “dangerous” (hello- the whole project is dangerous). He got to me, for sure- I was feeling weak and nervous up that high, and I never get nervous at heights.

This slideshow requires JavaScript.

It went downhill from there- I got the front pinned, then went to the back, and got it pinned. I called him from my cell and asked how much pressure he had holding the RP- “about 700 lbs”, he said. I told him to release it slowly- and as he did, the RP started to roll off the RPSL’s! I had him stop so I could get down. We talked about what to do- he was real nervous about releasing it, and so was I, but we had to move on. So I had him release it all the way. It rolled to almost 2 o’clock (10 o’clock from the front).

This slideshow requires JavaScript.

Well, the crane guy flipped out- said it was all unsafe, said rebar wouldn’t hold that thing in place, said we needed an engineer because rebar isn’t that strong. Note: 3/4″ rebar is very strong. Even though I followed the plans – they said 5/8″ rebar was good enough, but I thought 3/4″ was better- either way, there’s a tip I missed that I’ll discuss later. I tried to talk him into setting a few rafters- thinking that would stabilize the RP. I wanted him to roll it back to 12 o’clock with the crane, but he didn’t want to touch it. He shot down all my ideas. In his defense, he promised us 4 hours, but was there for 5.5, and only charged us for 4, so that was nice. But his attitude was awful- he was no help.

He chastised me for climbing up to the RP on a ladder attached to scaffolding, saying, “you sure you want to climb up there?”

At that point, I had had enough, and I shot back, “you gotta better way to release your straps?”

“well, no.”

“I’m serious- if you have a better idea, let me know.” But he just turned around and walked away. I was getting upset- his only help was that he had a crane. He wasn’t helpful with ideas, or experience, or anything else.

He wouldn’t listen to any ideas we had. We were just dumbfounded and frustrated. We had to leave the rafters on the ground, and the RP cockeyed. We had no idea how to fix it. I was completely burned out- heat exhaustion or depression or both. We went home thinking of giving up- ‘if the crane guy can’t help fix the RP, who can?’ we thought. It was overwhelming to think we had come this far only to end up with a cockeyed RP.  On top of that, it rained that night, and there was a little wind with it. I had visions of coming back the next day to find the house smashed and the RP laying on the ground.

I got on the LHBA forum and told them what happened. Everyone pitched in with ideas. I came up with a plan based on the awesome folks on LHBA. After talking to them, it didn’t seem that bad- lots of work, but not the end of the world. Saturday, we went out in the afternoon to see what we could come up with on the RP.  I moved the scaffolding over to the back wall, and threw a 20,000 lb strap over the RP in a choke position. I hoisted up my 60 lb, 2 ton chain hoist to the top of the wall, and used another strap tied to the wall to hook the other end of the chain hoist. With the hoist in the middle, and the RP in a choke, I was able to slowly wind up the chain hoist and roll the RP back to 12 o’clock. Here’s a video of the process. It was very scary moving a 10,000 lb log like that- thinking that it might fall off the RPSL’s or break the rebar, or worse, so I only moved it just a little at a time. Once stable, I climbed back up and drilled another hole next to the first one on the RP- and drove in a 5/8″ x 24″ piece of rebar to the RPSL. The theory is that with two pieces of rebar- if the RP rolls, one rebar pin will compress, and the other will decompress- the two actions will cancel most of the movement from the RP. It was successful, but took a long time to do.

This slideshow requires JavaScript.

 

With that part done, we felt a little more confident. I spent the next few days out in the rain, making my last set of rafters. We discussed ways we could do it ourselves by hand, and without the crane, but with winter coming on, we decided time was money.  So, when we noticed the weather was going to clear, I called the crane guy back. He said he was busy – the rain had pushed all his other jobs back, and he was playing catch up.  He said call him on a Thursday, and he might be able to come Friday. I started calling other crane companies, and even thought I would rent a telehandler and do it myself. All the other crane companies were busy too. In the end, learning to drive the telehandler and maneuver rafters seemed like too much.

All we could do was pray. We had nice weather, the rafters were ready, the RP was stable. But we had no crane available. I had faith that one of the crane companies would have an opening Friday, but they all claimed it would be another week. Thursday, I got a call from the original crane guy, and he said he couldn’t sleep at night thinking about how dangerous what I was doing was. He said for that reason, he had to say no. But I wasn’t dismayed. I called another crane company, and the office lady took all my info and said someone would call. A couple hours later, and a guy calls- says he’s out there at my property, sizing up the job. “You’re going to need a big crane.”

“Can you come tomorrow?” I asked.

“Yeah, we can make it.”

Part II: (link will be active in a few days!) we get the rafters up.

Cutting Rafters

20180719_180418_41710648440_o
They are not easy to maneuver.

Background

I’m neck deep into using my sawmill. Back in February when it was raining and muddy, I welded up another 18 feet of track for it in the neighbor’s shed. I made dogs to hold the logs in place and squared it up very well. I thought I would be putting the roof on in June of this year. But, I’ve had several delays- the weather being the number one delay, but then my job sent me to Florida for a week of training, and then our LandCruiser needed a new headgasket. Finding, cutting, peeling, and installing the RPSL’s was another task that slowed us down. I also made a new trailer for hauling logs- works great for small ones, but I bet it would’ve collapsed under the wall logs. And then finding, etc., etc. the logs for the rafters was a major slowdown, but I’ll explain below.

A note on the headgasket- I was just raring to go on the rafters, and desperately wanted to pay someone else to do it- it was going to eat up two weeks of progress – one week to troubleshoot (I needed some help from my buddy, and our schedules didn’t line up), and another week to get it fixed. He diagnosed it (perfectly, I found out) as a broken headgasket between cylinders 5 & 6.  Knowing that I’m neck deep in the cabin and wanted to pay someone to do it, he called his Toyota buddy, who said “September, and probably $2,000  – $3,000”. Wow! I was thinking $1,000. Not $3,000. I’m not THAT desperate, I guess. So, I ordered the parts. My buddy got me hooked up with a bay in his old partner’s garage that they weren’t using (working on cars in the rain is a pain). I was very busy at work, but managed to get a couple half days, and a full day to “git-r-dun”. So that was a little set back.

Which brings us up to speed.

 

 

This slideshow requires JavaScript.

Current status

I’ve got 23 rafters out of 28. I need to find about 5 or 6 more. The awesome neighbors keep offering more, even though I’ve already gotten about 20 from them so far. I cut them down, then walked off 30 feet on each log, and cut it at that point. I saved the tips, since many are 10″+ diameter and 20′ long- they will be used for the wrap around porch roof post supports (need 16 of them). I’ve got the milling process almost figured out to where it takes me about 2 hours to make a rafter- from pulling the log off the rack, to stacking the finished beam on the rack. I hope by the end of August, I’ll have them done and ready to go.

Problems and solutions

As usual, as I go from a total newbie on everything to a “pro” (I use “pro” very loosely, ha, ha), I’ve learned some tricks.

My engineer calculated that a beam with a minimum 10″ tip, and a 12″ middle and bottom has the same strength as a 4″x12″ beam. You would think that to make a rafter, you just lay the log on the track and cut one side to be 12″ thick, and the other 4″ thick, and you’re done. I wish. My logs are crooked and tapered, so I have to massage a 4×12 out of them. I’ve been able to, on some big logs, coax two 4×12’s out of them. But mostly, I only get one rafter, and a lot of nice 2×10’s or 2×12’s.

 

 

This slideshow requires JavaScript.

I found early on that the taper of the logs makes it necessary to jack up the log on the track before cutting it. The track has a very hard time keeping up. But back to the tapered log problem. I found that if I jack up the narrow end to be level with the fat end, I can then run a flat cut with the sawmill down the entire log, ending up with at least one flat side. My idea is that the flat side will face up- that the roof T&G needs only one flat side on the rafter- the bottom only touches the house in two places- at the Ridge Pole, and at the cap logs. So I’m not wasting my time making the bottom flat.  Once I have one flat side, I turn the log on the side and begin milling it down to 5″. This may take several passes because the log might be crooked, and won’t initially sit flat on the track.

A few logs have been large enough to get two rafters. I jack up the small end as above, but then I just cut the friggin’ thing exactly in half. Then I work on each half to get it to the right size.

Don’t forget we’re talking about a 27.5′ x 12+” diameter log that probably weighs 2,500 lbs. It is very difficult to turn the log for each cut. I’ve even turned some of them with the tractor because they are too heavy. They can also roll off the track. I keep having the scary thought of getting my leg crushed inside the track when a log decides to roll, so I never ever put my legs or arms anywhere a log could roll and crush something.

Eventually, the rafter behaves, and I get a pretty good 4×10 -> 4×12 by 27.5′ long rafter.

 

 

This slideshow requires JavaScript.

Here’s a video my wife took of me cutting a rafter.

Next steps

After I have 28 rafters, I’ll treat them with borate solution, then put on my math hat. The math hat is going to be tricky: To get the roof perfectly flat, I have to consider a few things:

  • Ridge Pole (RP): This log is what holds everything up. It is 56′ long, 29″ at the base, and about 15″ at the tip, so it has some taper. To make it level, I have to shorten the RPSL at the back of the house by 29″ – 15″ = 14″. This will make it level when it’s installed on the house. But then it’s not perfectly flat on top- it has some bumps and waves. I have to work this in when I place rafters on top of it. I may have to notch it to get everything perfect.
  • Rafters: They are not all exactly 4″x12″ on both ends. Most have a 4×12 butt. But the tips vary from 10″ to 12″. All of them are 5″ wide. I may put a 10″ on a part of the RP that is “high”, just so the rafters are all level.
  • Cap logs: This is where the other end of the rafters connect- these are the top wall logs. They are not perfectly level either. I have to consider this when placing the rafters on them.

With all this fitting and figuring, it seems like I should do it as I place the rafters and RP on the house, but that would mean measuring and fitting and chiseling while up 30 feet in the air. So, the plan is to do everything on the ground in advance:

  • Run a string line down the RP and level it on the ground.
  • Mark exactly where the rafters will go on the Ridge Pole. Note and mark the diameter of the Ridge Pole at each point the rafters will attach. Use the string line to get the height exact at each rafter attachment point.
  • Do the same thing on the Cap logs.
  • Use some really bright colored chalk or something to label the rafters, “AE or AW” through “IE or IW”: ‘A’ – ‘I’ designates the position, from back of the house to front of the house, of the rafter, while ‘E’ or ‘W’ designates whether it is on the (E)ast or (W)est side of the house. Each rafter on the East is paired with a rafter on the West- there are 14 pairs, spaced 4′ apart, so ‘A’ – ‘I’ makes sense.
  • Match the short rafters (less than 12″) with the tall part of the RP (where a bump or a bow sticks up). Match tall rafters (at least 12″) with the low parts of the RP (where it bows down).

When complete, I’ll have all the rafters laid out on racks in order, bolted together in pairs, next to the ridge pole, and all ready to lift by the crane when he shows up. If all goes well, the whole lift operation shouldn’t take more than about 5 hours. We are so excited for this part!