Cap Logs Installed!

40998587265_9c26028ed6_k

Our cap logs are installed- this means we are almost ready to enter a new phase of construction. It has been a long hard road. Some folks at LHBA claim we are moving at “one gear below breakneck speed” using our lifting poles, but it often doesn’t feel that way…

What are cap logs?

Cap logs are the final logs on the walls. In the photo above, they are the ones that stick way out on the front of the house. Paired with ‘double-butt logs’, they hold up the roof rafters, and give the roof enough overhang to protect the wall logs from rain. In a kit log home, they usually don’t stick out much, but for a butt & pass log home – with an expected lifespan of 350 – 450 years – they are a major part of that lifespan.

Notes on installation

Our plans are for a 40’x40′ cabin. The overhangs on the roof protrude out 7 feet past the walls on the gable ends, and about 4 feet out on the eave side. This means the cap logs have to be 7’+7’+40′ = 54′ long. Also, they need to hold up the roof rafters, so my goal was to make sure they were 12 inches minimum on both ends. With our tapered logs – this meant that the butt end would have to be absolutely huge to ensure at least 12 inches at the tip. This would also throw off our level layers (all 4 corners should be the same height).

This slideshow requires JavaScript.

The solution I came up with was to take two normal sized logs, splice them together and put them up as one log together, and let the butts hang out over the ends.

Easier said than done. How do you lift half of a log when the lifting poles are in the corners? In other words, how do you hold up a log in the middle of the house where there are no lifting poles? Easy (not easy)- you chain both together and lift them at the same time.

Although I could have (maybe) installed a temporary center lifting pole- this would take a lot of energy and time- I would basically need a 30′ lifting pole (the size of an RPSL) installed. It would need to be chained to the wall, along with pulleys, etc. Lots of work for something I would use once. So I decided to try everything else before this idea.

26745033927_0b14396a65_k

Using a cradle (suggested by Plumb Level), we were able to “safely” hold the logs in place while we pinned them. I won’t go into the details (unless someone is dying to know), but there were a lot of scary moments- like once I got the chained logs in place, I had to remove the unused portion of each log- this involves cutting the excess of the log, and hoping the desired portion just falls into place, with no way to chain it or support it until it was in place. The cradle helped a lot, but there were no guarantees.

Some unlucky (and funny) events from Course 13

First there was the “pinned boot” incident:

40508479954_e53e5b1051_k

There was a gap in the log I was working on. I was perched up on top pinning it into place, and my boot happened to be placed right where the pin was coming through. Once they go in, they don’t come out. It didn’t pinch my foot- just the edge of the boot- and tight enough that I couldn’t get my foot out. I was stuck. I called for Julie’s help. Now she is not normally one to climb ladders of any size, but she courageously started to climb. She was clinging to the ladder like she was a thousand feet off the ground. I kept encouraging her and she finally climbed up high enough to hand me my crowbar, and I was able to loosen the pin just enough to free my boot. LHBA folks suggested I just leave it there and chink around it, ha ha! ……No.

We had this log that was the right dimensions, but had a nasty hook in it at the tip. No matter how we rotated it, it wouldn’t lay flat. We decided to pin it anyway, and just deal with it later. It ended up being flat most of the way, until about 6′ from the end where it had this big bow in it. Since that corner (NE) has been historically low, we decided having the extra height in the corner would help get the height back up to where it needed to be. But since you can’t accurately measure the height on an odd row, we’d have to wait until layer 14 to find out if it was helping or not. And it is: before the cap logs, our heights worked out great- starting at the NE corner and going clockwise, we have 17’8″, 17’8″, 17’7″, 17’7″. For non-builder types- this means the East and West sides match each other exactly for height, while between the two sides, we are off by 1 inch. Remember- this is all using tapered crooked logs with knots and bends- a real testament to the Butt & Pass method.

And the burned out motor on the drill incident: It is a Black & Decker 1/2″ drill that didn’t really want to drill 300 holes, but it held up for the most part, and then just gave up with the drill bit lodged 12″ down in a log.  So I left it stuck up there; “sword in the stone”-like, for the weekend. I figured more power to the idiot who decides to try and steal it. There were no takers.

And five minutes later, the “what the heck happened to the jack hammer” problem: it just lost power in between pounding rebar. I took it home- I guess all the vibration and the weight on the cord from being up so high pulled its guts loose from the switch. I put a new clamp on the wire, taped it in place, and then put the handle back on. Then I taped the cord to the handle on the outside to alleviate some of the stress.

What’s next

The final height of our cap logs determines the final headroom height at the top of the stairs, since they are on the eave side of the house up against the wall. It works out to be (starting at the NE corner and going clockwise): 18′ 4 1/2″, 18’6″, 18′ 5 1/2″, 18′ 4 1/2″. Pretty good.

Now we finish with double-butt logs – these are not logs with 2 butts on them- they are logs that, instead of being normal “butt and pass” logs, are just logs that butt up against their neighbor logs on both ends. In this case, the logs they butt up against are the cap logs.

After that, we begin the next phase: installing the RPSL’s (Ridge Pole Support Logs). Two of these get bolted to the walls. Along with one in the middle. They are 30′ tall, and they hold up the Ridge Pole – which holds up the rafters and the roof.

The Ridge Pole is a monster sweet gum tree from our woods. It is by far the biggest heaviest longest and straightest log I’ve ever cut down. So far, it has evaded me being able to move it. But it won’t for long.

We also need to commit to a height for our girder log. This log spans the width of the house and holds up the 2nd floor. It also ties the East and West wall together so the rafters don’t push the house apart. It provides the “rigidness” that keeps the house tight. At least a little.

I don’t want to think too far, but I’m hoping we can get the roof on this summer.

We had a lovely visit from some LHBA members- Gary (Mosseyme) from East Tennessee came and looked one day in the rain and gave me a lot of good tips, and encouragement. Also, ‘Sdart’ on the LHBA forum- Sara and Rene were very nice and came out to see our progress. They are building in extreme Northern Idaho in an off grid location. They have been to many LHBA homes over the years all over the country and Sara told me, “even after looking at pictures, these homes are always impressive in person.”

Advertisements

Almost done with 1st floor logs

 

We’re nearing another crossroads- the logs are about 12 feet off the ground, which means they are about 9 feet up from the piers, and about 8 feet up from the finished floor height. All of which means we have to start thinking about the second floor. But first, I’ll summarize what’s happened since my last post.

36680426186_acbd282bde_k

Improving techniques

Jack hammer is pretty good

The jack hammer cost me about $130. I don’t know if it’s a monster jack hammer or just a regular one, having never owned a jack hammer before now. But it is definitely heavy- I think it weighs close to 50 pounds. I also ordered a “rod driver bit” to go with it. The rod driver bit is usually for driving electrical grounding rods into the ground. If your home was built in the last 20 years or so, you probably have one of these- it’s to prevent an electrical surge from frying the wiring in your house. The contractor will hammer a 6 foot piece of (usually) copper into the ground, and the easiest way to do it is with a jack hammer.

36173202440_19f0f25657_k

Driving rebar into logs is pretty much the same idea. The bit is just a shaft with a cylindrical hole in the end that fits over the rebar. I drive the rebar as far as I can into the log which leaves about 3 inches for me to finish pounding in by hand, which is very do-able, and it sure beats pounding the whole 20 inch piece of rebar with a sledge hammer. Instead of taking about 8 minutes per rebar, it now takes about 10-20 seconds with the jack hammer, and then about 1 minute with the sledge hammer. So I can finish pinning an entire log in about 30 minutes, instead of about 2 hours. And not as tired, either.

35892204874_f8dcd262d7_k1

Chainsaw needs some adjusting

Last night, my neighbor was asking how it’s going- I told him slow.  When making any straight down cut with my chainsaw lately, the saw wants to veer off towards the left and do this weird curvy cut. The neighbor asked if the blade was straight- yeah, I just bought it about two weeks ago. Then he asked when the last time I sharpened it, was I sitting behind the saw or in front of it? Ummmmm- I was sitting behind it. He said try sharpening it with the blade facing me- sitting behind it makes one set of teeth uneven. Huh. I had no idea, so I tried it on Saturday: I cleaned the whole thing, sharpened it, and went that afternoon to make some cuts- nope. Still curvy. My other saw- the McCollough- gave up the ghost. The repair shop said the piston and rings are no good, and the saw is so old, they don’t make parts for them. I’m going to try another blade and chain on my Husky, since it looks like I’ll be using this saw for quite a while yet.

What are temporary lifting poles?

This is a necessity. What happens is this: all of our logs are crooked, and we are using the crookedest ones first because of all the doors and windows on the first floor- the doors and windows make it easy to cut the crookedest part of the log right at the door or window, and then roll the log this way and that way to make it sit better and get it straightened out for pinning.

The problem is that when you cut a log in the middle, you have to support it somehow. With the lifting poles in the corner, you need something temporary to hold the log at the cut so it doesn’t roll off the wall. So I use the last 10 – 15 feet of a log as a temporary lifting pole, and stand it up on the pier. I chain-bind it to the existing wall logs, and put a pulley or chain hoist on top and suspend the log I’m about to cut with it. I make the cut, do any adjusting to straighten out the bows or knots, and then pin the log. Then I take down the lifting pole and use it for the next location.

35917504683_eacec3339d_k
see the short temporary lifting pole on that almost center pier?

Plans change…

We wanted a back door, we didn’t want one….Now we want one. While stacking logs, it became apparent that if we added a door on the back of the house, we could use more logs that were crooked. We also redesigned the kitchen- now, instead of separating the laundry room from the kitchen with a wall, we took out the wall between the kitchen and laundry on the plans, and opened up the laundry area and kitchen to each other. Now, when you enter the house from the side-back door, the laundry is on the right, and the kitchen is on the left- opening up a lot more space. I still need to update the CAD drawings, but I’ll get to it eventually. So far, the inspector hasn’t come out and asked to see the plans, and the copy I emailed him- well, he said it was too small to read. If I update them before he asks for them….I guess he’ll never know the difference?

Next item, please

At this point in their builds, many LHBA members begin to put in the RPSL logs that hold up the roof. These logs are bolted to the wall logs at the front and back center of the house, and will be 30 feet tall in our case. The reasoning on why to put them in at this point is that if the walls are higher than the fifth or sixth course, it’s too hard to get them over the wall. In our case, with a pier foundation, we can just slide them under the house, then lift them up on the inside. Our “advantage” is that our house is forty feet long, which makes it easy to work with a thirty foot log inside it. Our other “advantage” is that we are using lifting poles and block and tackle instead of a telehandler.

NC-3187-540-170

I put “advantage” in quotes because most folks using a telehandler would snicker about how these two items- a forty foot home and lifting poles – are an advantage.

But they would probably admit that I’m right in this case. Of course, they would say all the advantages of otherwise having a telehandler outweigh these two drawbacks, whereupon I am reminded that a cheap telehandler is about $8,000 (I’m guessing the one in the photo would be about $70K+), whereas my lifting poles were free, and my lifting equipment was about $400. Sure, they’re slow, but I’ve already had a guy who is using a crane on his build state that I’m stacking faster than he is. Weird.

I guess we’ll wait to do the RPSL’s. The book shows a diagram of how to lift the girder log and RPSL’s and the ridge pole into place using nothing but block and tackle. Sort of a step-by-step. It looks like if we finish the walls first, we can use the walls to attach rigging anywhere we want and get the RPSL’s “just so”. If I try to get them in now, the only thing I have that’s taller that the RPSL’s now is my corner lifting poles, and I don’t want to put that much lateral force on the poles- they could snap off if I lift something very heavy too far away from their centers.

36680425856_13c78431d0_h
While we weren’t watching, she was having fun with the camera…..

That’s where we’re at for now. Feel free to comment below.

1st layer done

This is a great feeling- The lifting poles worked, the pulleys and chain hoists worked, we figured out the kinks and got all four logs on the piers. It looks less like a grave yard with tombstones sticking up, and more like a….well, at least a perimeter with big posts sticking out of it:

20170621_191651_zps7mylvvyk

There was a little preparation required before setting the logs down on the piers:

20170615_183820_zpsgquk3nsv

That’s pressure treated #2 pine – 2×12 from the local hardware store, laying on top of a shingle (90lb builder’s felt) that I sourced from the county dump (they were new in the plastic, so I scooped up a bunch).

We set the first log, then I had this nagging feeling that I was supposed to call the inspector before stacking logs. I was pretty sure he would find something wrong with the concrete. I checked the inspection schedule and it said a post-pour inspection was due, so I worked up the motivation and finally called him. He said- “No, go ahead and keep doing what you’re doing- call me when you get to the rough in.” Ok! We’re on a roll now. The rough in is when you have your electrical outlets and wires run, along with the plumbing, but you haven’t put any drywall in (yes, we will have framed walls inside the cabin, just like a normal home).

Piqued their interest

With four 30-foot lifting poles sticking up in the air, our property has become something of an attraction. Everyone from the water utility guys, to the motorcycle guy down the road slows down and takes a gander every time they drive by. The utility guys actually drove onto the property and looked over the mechanics of everything- according to one neighbor they were there for over an hour checking out the ropes, pulleys, rebar, and logs. The neighbors say this build is the “talk of the town”. Everyone is so nice and excited. Now when I’m out there working, I’ve seen several cars every day slow down to look. I’ve seen some stop, then back up, stare, then wave, and drive on slowly. A few have even pulled up, just to say hi (and get a closer look). The older guys who stop by tell me if they were 10-20 years younger, they’d be doing this too. It’s nice- the positive support is great motivation.  I usually wave and continue on with my business. The permit office lady saw me at the store last night. She said the utility guys had their doubts, but she set them straight- “Don’t worry- he’s an engineer- he’s got it all figured out.” Wellllllllllll……yeah. I’d like to think I’m more of a mathematician, you know, because that’s what my degree is in, but ok…….

A few notes about the method

If we were laying 2×4’s, it would be pretty easy- draw a center line on the 2×4, measure the distance between each piece of rebar, drill holes, place 2×4 on the pier, done. Logs are a little more hairy….

Curvy logs

They are not straight- and they may curve in more than one direction. Also there are a lot of knots on this wood. Finally, the logs have a lot of taper, which is a comparison of bottom diameter to the top diameter. The taper is a measure how much the diameter decreases from the bottom to the top.  LHBA recommends logs have a taper of less than 1 inch for every 10 feet. Our logs are about 20″ on the bottom, and 12″ at the top, and 40+ feet long. Our taper works out to be 20-12 = 8″ over 40 feet, or 2″ every 10′- double what LHBA recommends. But LHBA also recommends building with what you have. It can be done, but adds a level of complication when you try to level the structure. Probably more on that will come as we stack logs- each layer, you alternate butts and tops: where the butts are on one layer, is where the tops will be on next layer. If you “mind your levels”, i.e., measure the height at each corner as you stack, you can pick logs that match each other. The goal is less than 1/2″ height difference between all corners at the top of the walls.

Block and tackle

1489785074404_zpsq4tepvus

I’m using antique triple blocks that weigh about 20 lbs each. I need two for each pole- one on top and one on the bottom. They are rated at I-don’t-know-but-I’m-sure-it’s-a-lot pounds. They are not made anymore because no one does it like this. The physics behind them is pretty cool. My rope is rated at about 800 lbs, but the logs weigh between 3,000 – 6,000 lbs. Using the triple blocks, I’m gaining a 7:1 advantage- 850 lbs per log, but since I’m using 2 sets of blocks- one on each pole, it’s really 850/2 = 425 lbs per log…..Well, I thought it was cool.

Other equipment

I’m also using 6,400 lb straps from Harbor Freight, a Cant Hook (or “can” hook, 🙂 ), my wife’s Landcruiser (helps center the logs over the rebar), a chain saw, sledge hammer, some trucker chains (5,400 lb) and my trusty tractor.

The process for the first course

The first course is different from all the other layers- you are putting the log down on the rebar (cemented into the piers), instead of pounding the rebar into the log (like on the rest of the courses).

I stair-stepped the rebar before putting the logs on: I cut the longest rebar to 30″, then made the one next to it 28″, then 26″, etc. This helps when lowering the log so you only have to mind getting one piece of rebar in the log at at time.

I also tried the recommended template approach- lay a strip of 1×4 on the piers and mark where the rebar is, turn the log upside down and mark the holes on the log- but they were so bumpy and long that it didn’t work. I asked around- and found a method using string- attach a string to the piers, and measure the offset of the rebar from the string, (remembering that if the rebar is 1″ to the right of the string, the hole will be drilled 1″ to the left of the center mark on the log (because the log is upside down)).  Transfer this info to the log, then drill straight down. Flip the log over (flip is a generous word), then attach to lifting straps, pull until it’s over the rebar. Then slowly lower the log until the rebar can be fed into the hole in the log (done by my wife).

This slideshow requires JavaScript.

This is very exciting. All the work for the past year+ designing our plans, getting utilities installed, cutting down trees, borating them, removing branches, burning brush piles, digging holes, building forms, fixing the tractor, and on and on- got us to this point. I guess you could say we are done with phase I. Phase II will be getting the rough in complete- the goal is to get the roof on this year (by New Years Eve). Phase III will be finishing the inside. So I’ll just say thanks for coming on this journey with us. Feel free to leave comments.

Next up is the rest of the courses- these are placed on top of the log below, pilot holes drilled, then rebar is pounded through log and halfway into the log below- every two feet, and offset by one foot on alternating rows.

“Houston, we have lift-off”

20170610_124242_zps1ipq8ket

The poles are in! I need to thank everyone who helped out. I often feel like I’m a recluse, and I have a hard time in social settings. I’m pretty much an introvert – parties wear me out, while enjoying gardening or working on my own is energizing. I asked around at church last week, and made a couple of pleas asking for help on facebook. I got a commitment of two people by Thursday night, but we needed more- a lot more. I got a couple more Friday night, and a couple of calls Saturday morning. It was humbling to think that these people thought enough of me to come help out. I’m indebted to them, because this is something that I could not do myself.

20170610_104454_zpsgyscfxyi
L-R: David Bailey, Nathan Forbes, Brian Hill, Jeff Hoki, Maxon Bromley, Jude Collins, Jared Mayfield. (Not pictured: Paul Glotzbach & Julie Hill)

My plan was to do as much work as possible before Saturday so that the tractor could do most of the work, while a few guys held onto the ropes to keep things from going sideways (literally).

The results were mixed- the guys still had to do a lot of work, but when the poles started going up, it went well – and quick. We got all four poles installed in 1.5 hours. Which was great because two of the guys had to leave for other family engagements at 11:00.

A few more details, then I promise to show some pictures:

When I tried it myself, I noticed the log just went right over the hole. I needed a way to get the log to dig into the dirt enough that the tractor could get it upright. I dug some trenches about ten feet long leading down to the hole. Each hole is four feet deep, so I made the trenches go down about three feet, with a one foot drop into the hole. I figured this little shelf would help prevent the pole from continuing past vertical once it was in the hole. I was right!

Along with the trenches, I piled up dirt to get the upper end of the pole off the ground, which also helped the bottom end angle down into the hole.

On the first lift, the tractor couldn’t overcome gravity due to the angle of the cable.  I needed the pole to be higher before the tractor could do its job. Having eight guys to lift the pole high enough and walk it upright was the answer. Once the top end of the pole was about 10 – 15 feet in the air, the tractor did the rest, and the guys on ropes were able to stabilize the pole while I maneuvered the tractor to get the pole straight. Then, the pole slipped into the hole.

Once the pole is in the hole, there’s a little fine tuning to get the pole completely vertical, then I climbed the ladder to remove the lifting cable, while the guys shovel dirt back in around the poles. Maxon was like, “every time you climb that ladder I get nervous”. Wait- you’re not nervous when lifting? 🙂

The whole process took about 20 minutes per pole. My wife helped babysit the children, took great pictures, and then peeled some logs.

First, the trenches and holes:

This slideshow requires JavaScript.

Then getting the lifting poles vertical:

This slideshow requires JavaScript.

Next up: getting the pressure-treated sill plate installed, then on to stacking logs! Woohoo! This is a major milestone!

Finishing Foundation, Getting ready to install Lifting poles

We didn’t have any blowouts on the foundation. I waited seven days for the concrete to dry, and then I started pulling the plywood off the piers. They looked ugly:

DSCF0661

The neighbor even came over to have a look. He said, “you gotta cover those up with mortar- if water gets in there and freezes, it’ll crack your foundation.

“But they’ll be under the house- and there’ll be a ten-foot wide porch to protect them,” I protested.

“Doesn’t matter- humidity in the air can do it, too. The building inspector might not like ’em looking like that,” he reminded me.

I knew he was right, even though I didn’t want him to be right. I bought several bags (like 20) of a structural mortar mix rated at 5500 p.s.i. and started slathering it on. It was no fun.

This slideshow requires JavaScript.

It took about 3/4 of a bag to do each pier, and it took about 45 minutes to cover each pier. I also had to dig up the plywood to get it out.

Why so bumpy?

As I dug and slathered, I tried to figure out what happened- why were my piers so bumpy? I think there were two problems: my plans call for “3,000 psi” concrete. But when I called the concrete company, they said they had 2500 psi and 3500 psi. That didn’t make any sense to me, so I asked the guy what the difference was. He said you usually use the 3500 psi for footings, while the 2500 psi was for walls. That still didn’t help- are piers considered footings or are they considered foundations? So I went with the 3500 psi. I think it had a bit more rocks in the mix. That was one problem. The other problem was that I buried the piers in dirt to keep them from floating during the pour. I put collars on them and buried them up to their necks with dirt. This wasn’t a problem except that you’re supposed to use a concrete vibrator to shake the concrete during the pour so you get nice smooth faces when it dries. But the driver said you don’t need that- just bang on the pier form with a hammer or the tip of the shovel, and that will shake it up good enough.  But obviously not- I think the dirt softened the blows, and that’s why the face of the concrete was so bumpy.

Getting Lifting poles ready

Well, I finished up on Saturday morning with the mortar. Next up is installing the lifting poles. First, we had to pick which four logs would be the lifting poles- I wanted small logs that were very straight, minimum of 12″ diameter, and they have to be 30 feet long.  The photos below show the preparation of a lifting pole.

This slideshow requires JavaScript.

I also had to dig 4 holes in the corner of the foundation- the holes have to be inside the perimeter of the foundation (because the lifting poles will be on the inside of the walls while lifting). The holes have to be at least 4 feet deep. These are temporary poles, and I’ll cut them down when the walls are complete. I have to install cleats to stop the block and tackle from sliding down the pole. The lifting strap in the photo holds the top pulley. The log hangs from the bottom pulley. Since I’m using triple blocks, the rope goes back and forth 7 times. So, a 30 foot pole needs at least 210 feet of rope. The plus side is that the force needed to lift a 4,000 log is 4,000 / 7  = about 600 lbs total, and since each log is lifted by 2 sets of pulleys, 600 / 2 = 300 lbs for each side, which my tractor can easily handle. To tie off the logs while lifting, I plan on using a prusik knot as a “progress capture knot” to stop the log from dropping when I release the pressure from the tractor.

Next, moving the lifting pole into position:

20170603_164929_zpshc6optdq

And then a fail on getting it vertical. I tried to lift it with the tractor, but the pole just wanted to flop around and not go up. So I tried to get it up on a little bit of an angle, but it was still no good.

This slideshow requires JavaScript.

So, we gave up trying to do it ourselves. We need help. I asked at church for some guys to come next Saturday- that gives me a week to prep all four poles with cleats, get them into position, have enough rope ready, and get all the pulleys “reeved” (that means getting the rope attached to the pulleys), and get two more 4′ deep holes ready in the corners. Got my work cut out for me.

blocks_mechanical_advantage_reevingdualtripples