Cap Logs Installed!

40998587265_9c26028ed6_k

Our cap logs are installed- this means we are almost ready to enter a new phase of construction. It has been a long hard road. Some folks at LHBA claim we are moving at “one gear below breakneck speed” using our lifting poles, but it often doesn’t feel that way…

What are cap logs?

Cap logs are the final logs on the walls. In the photo above, they are the ones that stick way out on the front of the house. Paired with ‘double-butt logs’, they hold up the roof rafters, and give the roof enough overhang to protect the wall logs from rain. In a kit log home, they usually don’t stick out much, but for a butt & pass log home – with an expected lifespan of 350 – 450 years – they are a major part of that lifespan.

Notes on installation

Our plans are for a 40’x40′ cabin. The overhangs on the roof protrude out 7 feet past the walls on the gable ends, and about 4 feet out on the eave side. This means the cap logs have to be 7’+7’+40′ = 54′ long. Also, they need to hold up the roof rafters, so my goal was to make sure they were 12 inches minimum on both ends. With our tapered logs – this meant that the butt end would have to be absolutely huge to ensure at least 12 inches at the tip. This would also throw off our level layers (all 4 corners should be the same height).

This slideshow requires JavaScript.

The solution I came up with was to take two normal sized logs, splice them together and put them up as one log together, and let the butts hang out over the ends.

Easier said than done. How do you lift half of a log when the lifting poles are in the corners? In other words, how do you hold up a log in the middle of the house where there are no lifting poles? Easy (not easy)- you chain both together and lift them at the same time.

Although I could have (maybe) installed a temporary center lifting pole- this would take a lot of energy and time- I would basically need a 30′ lifting pole (the size of an RPSL) installed. It would need to be chained to the wall, along with pulleys, etc. Lots of work for something I would use once. So I decided to try everything else before this idea.

26745033927_0b14396a65_k

Using a cradle (suggested by Plumb Level), we were able to “safely” hold the logs in place while we pinned them. I won’t go into the details (unless someone is dying to know), but there were a lot of scary moments- like once I got the chained logs in place, I had to remove the unused portion of each log- this involves cutting the excess of the log, and hoping the desired portion just falls into place, with no way to chain it or support it until it was in place. The cradle helped a lot, but there were no guarantees.

Some unlucky (and funny) events from Course 13

First there was the “pinned boot” incident:

40508479954_e53e5b1051_k

There was a gap in the log I was working on. I was perched up on top pinning it into place, and my boot happened to be placed right where the pin was coming through. Once they go in, they don’t come out. It didn’t pinch my foot- just the edge of the boot- and tight enough that I couldn’t get my foot out. I was stuck. I called for Julie’s help. Now she is not normally one to climb ladders of any size, but she courageously started to climb. She was clinging to the ladder like she was a thousand feet off the ground. I kept encouraging her and she finally climbed up high enough to hand me my crowbar, and I was able to loosen the pin just enough to free my boot. LHBA folks suggested I just leave it there and chink around it, ha ha! ……No.

We had this log that was the right dimensions, but had a nasty hook in it at the tip. No matter how we rotated it, it wouldn’t lay flat. We decided to pin it anyway, and just deal with it later. It ended up being flat most of the way, until about 6′ from the end where it had this big bow in it. Since that corner (NE) has been historically low, we decided having the extra height in the corner would help get the height back up to where it needed to be. But since you can’t accurately measure the height on an odd row, we’d have to wait until layer 14 to find out if it was helping or not. And it is: before the cap logs, our heights worked out great- starting at the NE corner and going clockwise, we have 17’8″, 17’8″, 17’7″, 17’7″. For non-builder types- this means the East and West sides match each other exactly for height, while between the two sides, we are off by 1 inch. Remember- this is all using tapered crooked logs with knots and bends- a real testament to the Butt & Pass method.

And the burned out motor on the drill incident: It is a Black & Decker 1/2″ drill that didn’t really want to drill 300 holes, but it held up for the most part, and then just gave up with the drill bit lodged 12″ down in a log.  So I left it stuck up there; “sword in the stone”-like, for the weekend. I figured more power to the idiot who decides to try and steal it. There were no takers.

And five minutes later, the “what the heck happened to the jack hammer” problem: it just lost power in between pounding rebar. I took it home- I guess all the vibration and the weight on the cord from being up so high pulled its guts loose from the switch. I put a new clamp on the wire, taped it in place, and then put the handle back on. Then I taped the cord to the handle on the outside to alleviate some of the stress.

What’s next

The final height of our cap logs determines the final headroom height at the top of the stairs, since they are on the eave side of the house up against the wall. It works out to be (starting at the NE corner and going clockwise): 18′ 4 1/2″, 18’6″, 18′ 5 1/2″, 18′ 4 1/2″. Pretty good.

Now we finish with double-butt logs – these are not logs with 2 butts on them- they are logs that, instead of being normal “butt and pass” logs, are just logs that butt up against their neighbor logs on both ends. In this case, the logs they butt up against are the cap logs.

After that, we begin the next phase: installing the RPSL’s (Ridge Pole Support Logs). Two of these get bolted to the walls. Along with one in the middle. They are 30′ tall, and they hold up the Ridge Pole – which holds up the rafters and the roof.

The Ridge Pole is a monster sweet gum tree from our woods. It is by far the biggest heaviest longest and straightest log I’ve ever cut down. So far, it has evaded me being able to move it. But it won’t for long.

We also need to commit to a height for our girder log. This log spans the width of the house and holds up the 2nd floor. It also ties the East and West wall together so the rafters don’t push the house apart. It provides the “rigidness” that keeps the house tight. At least a little.

I don’t want to think too far, but I’m hoping we can get the roof on this summer.

We had a lovely visit from some LHBA members- Gary (Mosseyme) from East Tennessee came and looked one day in the rain and gave me a lot of good tips, and encouragement. Also, ‘Sdart’ on the LHBA forum- Sara and Rene were very nice and came out to see our progress. They are building in extreme Northern Idaho in an off grid location. They have been to many LHBA homes over the years all over the country and Sara told me, “even after looking at pictures, these homes are always impressive in person.”

Advertisements

I’m back on WordPress…

26993129588_cf986a39dd_k
Just finished peeling the very last wall log! Yay!

Hi everyone- I thought I had made my last post and was moving over to my other blog on google-owned Blogger. But with all the censorship over gun videos on YouTube (owned by Google, and they also own Blogger- where my new blog was going to be)  –  I’ve changed my mind again. I’ll explain…

The problem is that I have principles that I support – like freedom of speech- that are being attacked by the sites that host my videos and the other blog. They are now refusing to allow videos that show how guns are made and how to reload ammo. You may think guns are evil. That’s ok. But should they censor that content? Be careful- something you believe in may be censored eventually. I understand censoring child sex trafficking videos. I don’t understand infringing on the right to keep and bear arms by an American company.  Remember, they didn’t become so fabulously wealthy by opening their doors for business in some other country — they became fabulously wealthy here, in the U.S.A.. They live, do business in, and benefit from a country that protects their right to free speech and association.  And now they want to pay back the citizens of this great nation by censoring law-abiding individuals they disagree with? It’s like they are fighting against their own mother.  It’s un-American. Who does that?

The question for me is: should I allow YouTube, who is busily engaged in censoring “speech” that it doesn’t agree with, to make money off of my videos? They aren’t coming after me, so why should I care? Maybe they will. Maybe staying out of debt will eventually become hate speech.  I made a mistake, I think, in going over there to the dark side of blogging. I apologize. I didn’t think it had gotten this bad.

So I’m back to WordPress. If you like what you see, sign up to receive emails every time I post.

Progress of the build

 

Last weekend, I got the tractor stuck in the mud trying to move the 8,500 lb ridgepole, followed by getting the Landcruiser stuck in the mud to pull the tractor out. I called the neighbor who brought his loader over and pulled both of them out. Later the same day, Julie got some great video of me spinning my wheels again while we put up log #47. In the video, the log got stuck between two logs after it broke the 2×4 that was supposed to prevent it- a very frustrating situation.

2018-03-24-21-50-41_scrot

Today, I got my Honda Civic running again. My theory on what broke it: the crank position sensor got fried, causing the injectors to flood the engine with gas, washing the oil out of the cylinders, and causing complete compression loss. After replacing parts and letting two tablespoons of oil soak in the engine overnight, it sputtered back to life. Later, we went to an Easter Egg hunt in Hartselle:

26126200897_11071da5a0_k

After the Easter Egg hunt, we decided to take the long way home and drove by the cabin. I finished pinning some logs, and then we decided to go ahead and put #48 up there, but didn’t pin it. We need to rotate it and pin it.  Julie counted the logs we have left and did some measurements- We are pretty sure we need 56 logs to complete the walls- fourteen layers. With #48 up, we have two layers or eight logs left.

39955886605_1e3c0a5fe9_k

 

How to make your own triple blocks for less than $45

This slideshow requires JavaScript.

Why a triple block? Why not a double? or a single?

Because two triple blocks working together gives you a 7:1 mechanical advantage- 5,000 lb log requires only ~720 lbs of force to lift. And you can use just 5/8″ thick rope to lift 720 lbs. A double block would only reduce the force down to 1,250 lb. But you have to double that- for each end of the log. And a single……ummmmm…..there’s no mechanical advantage to a single. Stop talking about single pulleys. On the other end, a “quadruple” block doesn’t really exist beyond huge construction cranes with wire rope- from what I’ve seen and read, anything more than three pulleys and the friction increases beyond the efficiency gained. So, a triple block it is.

First, I looked online. And found…..not quite nothing, but almost. It’s unbelievable in this age of Amazon and Ebay that you can’t find a triple block with more than 3,000 pound capacity. I suppose not many people are lifting heavy objects by hand. Ok, you can find them, but they are insanely expensive, and you need two to make a set. Not to mention you need four sets to work efficiently. Look at that price:2017-07-03-22-48-53_scrot

I mean, I guess you could climb a 30-foot lifting pole and change the block and tackle out every time you want to lift a log, but you would still need four pulleys- two on each pole- to lift each log. So, it would cost you $1,300, plus rope (about $300).

This calls for a cheaper solution:

Enter Harbor Freight:

2017-07-03-23-07-00_scrot

Of course, I’d need six of them to make a set, but that’s only $72, not $327. And some grade 8 bolts, which are easy to obtain from Fastenall.

Here’s what I came up with:20170705_204824_zpsm7auqpcv

 

 

Some more notes: I needed somewhere to tie the end of the rope- on the antique pulleys, there’s a place called a becket 70d1a3c340f41214567fd48f2725ccd9--block-and-tackle-pulley-light. I didn’t have one, so I took two extra plates from a single pulley, and put a bolt through them.

The results

I just finished lifting the biggest log yet- over 6 feet around at the base, and 50+ feet long- I figure it weighs around 6,000 lbs. The pulley held just fine- in fact, it held better than the #6 triples that I had on the opposite end. The singles (on the box) were originally rated for 3,000 lbs, so I figure the modified triple is worth at least that much, but with that huge log, probably more like 4,000 lbs.

I spent $12 per pulley x 3 pulleys = $36. The two grade 8 bolts were about $4 each. So for ~$45, I got what normally costs over $300.

 

1st layer done

This is a great feeling- The lifting poles worked, the pulleys and chain hoists worked, we figured out the kinks and got all four logs on the piers. It looks less like a grave yard with tombstones sticking up, and more like a….well, at least a perimeter with big posts sticking out of it:

20170621_191651_zps7mylvvyk

There was a little preparation required before setting the logs down on the piers:

20170615_183820_zpsgquk3nsv

That’s pressure treated #2 pine – 2×12 from the local hardware store, laying on top of a shingle (90lb builder’s felt) that I sourced from the county dump (they were new in the plastic, so I scooped up a bunch).

We set the first log, then I had this nagging feeling that I was supposed to call the inspector before stacking logs. I was pretty sure he would find something wrong with the concrete. I checked the inspection schedule and it said a post-pour inspection was due, so I worked up the motivation and finally called him. He said- “No, go ahead and keep doing what you’re doing- call me when you get to the rough in.” Ok! We’re on a roll now. The rough in is when you have your electrical outlets and wires run, along with the plumbing, but you haven’t put any drywall in (yes, we will have framed walls inside the cabin, just like a normal home).

Piqued their interest

With four 30-foot lifting poles sticking up in the air, our property has become something of an attraction. Everyone from the water utility guys, to the motorcycle guy down the road slows down and takes a gander every time they drive by. The utility guys actually drove onto the property and looked over the mechanics of everything- according to one neighbor they were there for over an hour checking out the ropes, pulleys, rebar, and logs. The neighbors say this build is the “talk of the town”. Everyone is so nice and excited. Now when I’m out there working, I’ve seen several cars every day slow down to look. I’ve seen some stop, then back up, stare, then wave, and drive on slowly. A few have even pulled up, just to say hi (and get a closer look). The older guys who stop by tell me if they were 10-20 years younger, they’d be doing this too. It’s nice- the positive support is great motivation.  I usually wave and continue on with my business. The permit office lady saw me at the store last night. She said the utility guys had their doubts, but she set them straight- “Don’t worry- he’s an engineer- he’s got it all figured out.” Wellllllllllll……yeah. I’d like to think I’m more of a mathematician, you know, because that’s what my degree is in, but ok…….

A few notes about the method

If we were laying 2×4’s, it would be pretty easy- draw a center line on the 2×4, measure the distance between each piece of rebar, drill holes, place 2×4 on the pier, done. Logs are a little more hairy….

Curvy logs

They are not straight- and they may curve in more than one direction. Also there are a lot of knots on this wood. Finally, the logs have a lot of taper, which is a comparison of bottom diameter to the top diameter. The taper is a measure how much the diameter decreases from the bottom to the top.  LHBA recommends logs have a taper of less than 1 inch for every 10 feet. Our logs are about 20″ on the bottom, and 12″ at the top, and 40+ feet long. Our taper works out to be 20-12 = 8″ over 40 feet, or 2″ every 10′- double what LHBA recommends. But LHBA also recommends building with what you have. It can be done, but adds a level of complication when you try to level the structure. Probably more on that will come as we stack logs- each layer, you alternate butts and tops: where the butts are on one layer, is where the tops will be on next layer. If you “mind your levels”, i.e., measure the height at each corner as you stack, you can pick logs that match each other. The goal is less than 1/2″ height difference between all corners at the top of the walls.

Block and tackle

1489785074404_zpsq4tepvus

I’m using antique triple blocks that weigh about 20 lbs each. I need two for each pole- one on top and one on the bottom. They are rated at I-don’t-know-but-I’m-sure-it’s-a-lot pounds. They are not made anymore because no one does it like this. The physics behind them is pretty cool. My rope is rated at about 800 lbs, but the logs weigh between 3,000 – 6,000 lbs. Using the triple blocks, I’m gaining a 7:1 advantage- 850 lbs per log, but since I’m using 2 sets of blocks- one on each pole, it’s really 850/2 = 425 lbs per log…..Well, I thought it was cool.

Other equipment

I’m also using 6,400 lb straps from Harbor Freight, a Cant Hook (or “can” hook, 🙂 ), my wife’s Landcruiser (helps center the logs over the rebar), a chain saw, sledge hammer, some trucker chains (5,400 lb) and my trusty tractor.

The process for the first course

The first course is different from all the other layers- you are putting the log down on the rebar (cemented into the piers), instead of pounding the rebar into the log (like on the rest of the courses).

I stair-stepped the rebar before putting the logs on: I cut the longest rebar to 30″, then made the one next to it 28″, then 26″, etc. This helps when lowering the log so you only have to mind getting one piece of rebar in the log at at time.

I also tried the recommended template approach- lay a strip of 1×4 on the piers and mark where the rebar is, turn the log upside down and mark the holes on the log- but they were so bumpy and long that it didn’t work. I asked around- and found a method using string- attach a string to the piers, and measure the offset of the rebar from the string, (remembering that if the rebar is 1″ to the right of the string, the hole will be drilled 1″ to the left of the center mark on the log (because the log is upside down)).  Transfer this info to the log, then drill straight down. Flip the log over (flip is a generous word), then attach to lifting straps, pull until it’s over the rebar. Then slowly lower the log until the rebar can be fed into the hole in the log (done by my wife).

This slideshow requires JavaScript.

This is very exciting. All the work for the past year+ designing our plans, getting utilities installed, cutting down trees, borating them, removing branches, burning brush piles, digging holes, building forms, fixing the tractor, and on and on- got us to this point. I guess you could say we are done with phase I. Phase II will be getting the rough in complete- the goal is to get the roof on this year (by New Years Eve). Phase III will be finishing the inside. So I’ll just say thanks for coming on this journey with us. Feel free to leave comments.

Next up is the rest of the courses- these are placed on top of the log below, pilot holes drilled, then rebar is pounded through log and halfway into the log below- every two feet, and offset by one foot on alternating rows.